В прикреплении - рисунок: в окружность вписан правильный треугольник, на стороне этого треугольника построен квадрат.
Примечание: все размеры на рисунке уменьшены в 2 раза.
Действительные размеры:
диаметр окружности = 16 см (на рисунке = 8 см);
сторона вписанного треугольника = (радиус 8) *√3 ≈ 13,86 см (на рисунке = 6,93 см);
сторона квадрата = стороне вписанного треугольника = 13,86 см (на рисунке 6,93 см);
дальше не совсем понятно, радиус какой окружности надо найти: если описанной около квадрата, то радиус такой окружности равен половине диагонали квадрата, которая, в свою очередь равна =
Т.к диагонали прямоугольника равны и делятся точкой пересечения на пополам, то треугольник AOB - равнобедренный (OB=OA), значит, углы ABO и BAO равны 55-ти градусам, а угол AOB=180 - 2*55=70. По свойству пересекающихся прямых (противолежащие углы пересекающихся прямых равны) угол AOB=углу COD=70 градусам, а угол BOC=углу AOD=(360 - 2*70)*0.5=110 градусов. Треугольник AOD - равнобедренный (AO=OD), угол OAD=углу ODA=(180-110)*0.5=35 градусов.
См. Объяснение
Объяснение:
В прикреплении - рисунок: в окружность вписан правильный треугольник, на стороне этого треугольника построен квадрат.
Примечание: все размеры на рисунке уменьшены в 2 раза.
Действительные размеры:
диаметр окружности = 16 см (на рисунке = 8 см);
сторона вписанного треугольника = (радиус 8) *√3 ≈ 13,86 см (на рисунке = 6,93 см);
сторона квадрата = стороне вписанного треугольника = 13,86 см (на рисунке 6,93 см);
дальше не совсем понятно, радиус какой окружности надо найти: если описанной около квадрата, то радиус такой окружности равен половине диагонали квадрата, которая, в свою очередь равна =
√[(8 *√3)² + (8 *√3)²] = √ (64*3 + 64*3) = √ 384 = √(64*6) = 8√6 ≈ 19,6 см (на рисунке 9,8 см);
соответственно радиус окружности, описанной около квадрата, равен
(8√6)/2 = 4 √6 ≈ 9,8 см.