Определить острый угол между высотой и медианой треугольника abc, проведенными из вершины a, если координаты вершин известны: a(−1 ,1), b(6, 5) и c(−2, −4)
1)Чтобы найти площадь используя катеты, есть специальная формула. S=(a*b) :2. Теперь умножаем катеты и делим их на два. То есть 7*9=63:2=31,5
ответ: 31,5
2)В равнобедренном треугольнике медиана является одновременно и высотой. Поэтому получается 2 прямоугольных треугольника. Основание делится на пополам из за медианы. Поэтому 12:2=6см, это первый катет. А медиана является вторым катетом. Теперь опять же используем формулу площади которую я писала сверху. S=7*6=42:2=21. То что мы получили 21, это площадь одного треугольника. А мы в начале делили этот треугольник на два. Поэтому 21+21=42
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √40 = 6.32455532,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √40 = 6.32455532,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √16 = 4.
Из этого расчёта видно, что треугольник равнобедренный.
Периметр равен 16,64911064.
2) МЕДИАНЫ ТРЕУГОЛЬНИКА Медиана АM1 из вершины A: Координаты M1(3; -1) Длина AM1 = 4.24264068711928 Медиана BM2 из вершины B: Координаты M2(2; 2) Длина BM2 = 6 Медиана CM3 из вершины C: Координаты M3(1; -1) Длина CM3 = 4.24264068711928
Длины средних линий:
А₁В₁ = АВ/2 = 3.16227766,
В₁С₁ = ВС/2 = 3.16227766,
А₁С₁ = АС/2 = 2.
1) 31,5
2) 42
Объяснение:
1)Чтобы найти площадь используя катеты, есть специальная формула. S=(a*b) :2. Теперь умножаем катеты и делим их на два. То есть 7*9=63:2=31,5
ответ: 31,5
2)В равнобедренном треугольнике медиана является одновременно и высотой. Поэтому получается 2 прямоугольных треугольника. Основание делится на пополам из за медианы. Поэтому 12:2=6см, это первый катет. А медиана является вторым катетом. Теперь опять же используем формулу площади которую я писала сверху. S=7*6=42:2=21. То что мы получили 21, это площадь одного треугольника. А мы в начале делили этот треугольник на два. Поэтому 21+21=42
ответ :42