ответ действительно номер 3, решается это все очень просто: есть неравенство вида x^2-0,1x<0, исследуем функцию: т.к. коэффициент при x^2 больше 0 -> ветви параболы направленны в верх, теперь найдем решения уравнения x^2-0.1x=0 - > x(x-0.1)=0 -> x=0 или x=0.1 ; и т.к ветви параболы направленны вверх , то все что лежит в промежутке (-inf ; 0) U (0.1 ; inf) (inf - бесконечность) ,будет строго больше 0 , а при корнях уравнения которое мы решили , получим что значение выражения 0 -> на промежутке (0;0,1) парабола ниже оси OX - > x^2-0,1x<0 при x ∈ (0;0,1)
Проводим через линию пересечения оси сечения и оси верхнего основания (далее - хорда) радиус цилиндра, он образует с хордой прямой угол далее к концам хорды проводим ещё 2 радиуса. получаем равнобедренный треугольник с высотой 2 (по условию) рассмотрим один из полученных прямоугольных треугольников (половина равнобедренного) угол у основания равен 75 градусам, второй равен 15 градусам используя вывод из теоремы синусов мы имеет, что основание прямоугольного треугольника, равное половине хорды, есть не что иное, как произведение известного катета (2) на тангенс прилежащего угла в 15 градусов. Значение почти табличное)) умножаем результат на 2, получаем хорду. поскольку сечение параллельно высоте цилиндра, то перпендикуляр в плоскости сечения от верхнего основания цилиндра до нижнего равен 10. произведение хорды и, грубо говоря, высоты цилиндра - искомая площадь сечения
есть неравенство вида x^2-0,1x<0,
исследуем функцию: т.к. коэффициент при x^2 больше 0 -> ветви параболы направленны в верх, теперь найдем решения уравнения x^2-0.1x=0 - >
x(x-0.1)=0 -> x=0 или x=0.1 ; и т.к ветви параболы направленны вверх , то все что лежит в промежутке (-inf ; 0) U (0.1 ; inf) (inf - бесконечность) ,будет строго больше 0 , а при корнях уравнения которое мы решили , получим что значение выражения 0 -> на промежутке (0;0,1) парабола ниже оси OX - > x^2-0,1x<0 при x ∈ (0;0,1)