Пусть данная сфера касается стороны bcтреугольника abc в точке k. тогдаbk = bn = 1, am = an = 1, cm = 2 . am = 2, ck = cm= 2.сечение сферы плоскостью треугольника abcесть окружность, впмсанная в треугольник abc, причем центр o1 этой окружности - ортогональная проекция центра o сферы на плоскость треугольника abc. значит, oo1 - высота пирамиды oabc.пусть r - радиус окружности, вписанной в треугольник abc, p - ролупериметр треугольника, s - площадь. поскольку треугольник abc равнобедренный, отрезкок cn - его высота. тогдаcn =  =  = 2,s = ab . cn = 2, r = s/p = 2/4 = /2.из прямоугольного треугольника oo1nнаходим, чтоoo1 =  =  = 3/.следовательно,v(oabc) = s . oo1 = 2 . 3/ = 2.
У куба все грани квадраты. Диагонали квадрата равны и точкой пересечения делятся пополам.
Пусть О - точка пересечения диагоналей грани ABCD.
В треугольнике АВ₁С проведем отрезок ТО.
ТО - средняя линия треугольника АВ₁С, значит ТО ║ АВ₁,
т.е. ТО - это отрезок прямой k, проходящей через точку Т параллельно прямой АВ₁, расположенный внутри куба.
АВ₁ = 2ТО = 2 · 4 = 8 см по свойству средней линии.
Площадь квадрата можно найти как половину квадрата его диагонали (квадрат - ромб с равными диагоналями, а площадь ромба равна половине произведения его диагоналей):
ответ: 192 см²
Объяснение:
У куба все грани квадраты. Диагонали квадрата равны и точкой пересечения делятся пополам.
Пусть О - точка пересечения диагоналей грани ABCD.
В треугольнике АВ₁С проведем отрезок ТО.
ТО - средняя линия треугольника АВ₁С, значит ТО ║ АВ₁,
т.е. ТО - это отрезок прямой k, проходящей через точку Т параллельно прямой АВ₁, расположенный внутри куба.
АВ₁ = 2ТО = 2 · 4 = 8 см по свойству средней линии.
Площадь квадрата можно найти как половину квадрата его диагонали (квадрат - ромб с равными диагоналями, а площадь ромба равна половине произведения его диагоналей):
Saa₁b₁b = 1/2 AB₁² = 1/2 · 64 = 32 см²
Площадь поверхности куба:
Sпов = 6 · Saa₁b₁b = 6 · 32 = 192 см²