Тут можно ввести прямоугольную систему координат, где оси - это прямые, по которым пересекаются плоскости. Тогда координаты центра первого шара (1,1,1). А в зависимости от количества "минусов" в координатах центра второго шара (т.е. от октанта, в котором он расположен) возможны 4 случая: 1) Координаты центра (2,2,2). Расстояние равно √((2-1)²+(2-1)^2+(2-1)²)=√3 2) Координаты центра (-2,2,2). Расстояние равно √((2+1)²+(2-1)^2+(2-1)²)=√11 3) Координаты центра (-2,-2,2). Расстояние равно √((2+1)²+(2+1)^2+(2-1)²)=√19 4) Координаты центра (-2,-2,-2). Расстояние равно √((2+1)²+(2+1)^2+(2+1)²)=3√3
Параллелограмм АВСД. Проведем биссектрису угла А, она пересечет сторону ВС в точке Н (<BAН=<ДAН). Вторая биссектриса ула В перескает сторону АД в точке М (<АВМ=<СВМ). У параллелограмма углы, прилежащие к любой стороне, в сумме равны 180° (<А+<В=180). Значит половины этих углов <ВАН+<АВМ=90° Тогда в ΔАВК <АКВ=180-(<ВАК+<АВК)=180-90=90°. Проведем окружность диаметром АВ. Если вписанный угол опирается на диаметр этой окружности, значит он -прямой. У нас <АКВ=90°, значит он опирается на диаметр и является вписанным углом в эту окружность. Вписанный угол — угол, вершина которого лежит на окружности, значит К лежит на окружности, что и требовалось доказать
1) Координаты центра (2,2,2). Расстояние равно √((2-1)²+(2-1)^2+(2-1)²)=√3
2) Координаты центра (-2,2,2). Расстояние равно √((2+1)²+(2-1)^2+(2-1)²)=√11
3) Координаты центра (-2,-2,2). Расстояние равно √((2+1)²+(2+1)^2+(2-1)²)=√19
4) Координаты центра (-2,-2,-2). Расстояние равно √((2+1)²+(2+1)^2+(2+1)²)=3√3
У параллелограмма углы, прилежащие к любой стороне, в сумме равны 180° (<А+<В=180).
Значит половины этих углов <ВАН+<АВМ=90°
Тогда в ΔАВК <АКВ=180-(<ВАК+<АВК)=180-90=90°.
Проведем окружность диаметром АВ.
Если вписанный угол опирается на диаметр этой окружности, значит он -прямой.
У нас <АКВ=90°, значит он опирается на диаметр и является вписанным углом в эту окружность. Вписанный угол — угол, вершина которого лежит на окружности, значит К лежит на окружности, что и требовалось доказать