Введем x, большее основание равно 3x, меньшие 2x, тогда средняя линия равна(m)
Проведем высоты из тупых углов трапеции, получи прямоугольные треугольники с острыми углами 30 и 60 градусов и катетами 0.5x, тогда боковые стороны трапеции равны x, так как катет лежащий против угла в 30 градусов равен половине гипотенузе. Средняя линия соединяет середины боковых сторон, следовательно у получившихся 2-х трапеций боковые стороны будут равны по 0.5х.
1.
Пусть ∠1=х°, тогда ∠2=(42+х)°, что в сумме составляет 180° по определению смежных углов. Составим уравнение:
х+42+х=180; 2х=138; х=69.
∠1=∠3=69°; ∠2=∠4=69+42=111°.
2. Дано: ∠ВМК и ∠АМК - смежные, МС - биссектриса ∠АМК. Найти ∠СМК и ∠СМВ.
Пусть ∠ВМК=х°, тогда ∠АМК=5х°, что в сумме составляет 180°.
х+5х=180; 6х=180; х=30.
∠ВМК=30°, ∠АМК=30*5=150°
∠СМК=1/2 ∠АМК = 150:2=75°
∠СМВ=∠СМК+∠ВМК=75+30=105°
3. Дано: АВ и СD - прямые, ∠СОК=118°, ОК - биссектриса ∠АОD. Найти ∠ВОD.
∠КОD и ∠СОК - смежные, значит, их сумма составляет 180°.
∠КОD = 180-118=62°
∠АОК=∠КОD=62° (по определению биссектрисы)
∠АОК+∠КОD=62+62=124°
∠ВОD=180-124=56°
Введем x, большее основание равно 3x, меньшие 2x, тогда средняя линия равна(m)
Проведем высоты из тупых углов трапеции, получи прямоугольные треугольники с острыми углами 30 и 60 градусов и катетами 0.5x, тогда боковые стороны трапеции равны x, так как катет лежащий против угла в 30 градусов равен половине гипотенузе. Средняя линия соединяет середины боковых сторон, следовательно у получившихся 2-х трапеций боковые стороны будут равны по 0.5х.
Периметр меньшей трапеции равен:
P=2x+2.5x+0.5x+0.5x=5.5x
Периметр большей:
P=3x+2.5x+0.5x+0.5x=6.5x
Отношение периметров:
ответ: 11/13