Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
1)двумя катетами:
а)а=20,b=21
гипотенуза по теореме Пифагора
с=корень(a^2+b^2)=корень(20^2+21^2) = корень(841) =29
Неизвестные острые углы
cos a =a/c =20/29
a = arccos(20/29) = 46,4 градуса
y =90-a =90-46,4 =43,6
2)гипотенузой и катетом:
а)с=17,а=15
Найдем второй катет
b =корень(с^2-a^2) =корень(17^2-15^2) = корень(64) =8
Неизвестные острые углы
cos a =a/c =15/17
a = arccos(15/17) = 28,1 градуса
y =90-a =90-28,1 =61,9
3)гипотенузой и острым углом:
а)с=8,угол A=70 градусов
4)катетом и прилеглым углом:
а)а=12,угол А= 32 гра
Гипотенуза
с = a/cos70 = 12/cos70 = 35,1
другой катет
b = a*tg70=12*tg70 = 33