Дано тр. ABCК, M - середины AB и ВСAB=BCBD - медиана Док-ть:тр. BKD = тр. BMD Док-во:так как K и M по условию середины сторон AB и ВС, то KM - средняя линия тр. ABCAB=BC (по условию тр. равнобедренный), след-но BK=BM и угол BKM = углу BMK (углы при основании равнобедренного тр.)BD - медиана (из определения - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны), след-но KD=DM Значит по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.эти треугольники равны (BK=BM, KD=DM, угол BKM = углу BMK)
Неважно, какой из углов будет обозначен 1. По теоремам об углах, образованных двумя параллельными прямыми и секущей:
1. Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.
2. Если две параллельные прямые пересечены секущей, то соответственные углы равны.
3. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Следовательно, образуются 4 угла одной величины, 4 угла другой величины, и их сумма равна величине развернутого угла. (На рисунке приложения отмечены равные углы) ∠1+∠2=180° По условию ∠1 меньше ∠2 на 40° ⇒ ∠2=∠1+40°; ⇒ ∠1+(∠1+40°)=180° откуда ∠1=70°
Примечание: Если один из углов, образованных параллельными прямыми и секущей равен 90°, то все остальные углы равны ему.
Док-ть:тр. BKD = тр. BMD
Док-во:так как K и M по условию середины сторон AB и ВС, то KM - средняя линия тр. ABCAB=BC (по условию тр. равнобедренный), след-но BK=BM и угол BKM = углу BMK (углы при основании равнобедренного тр.)BD - медиана (из определения - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны), след-но KD=DM Значит по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.эти треугольники равны (BK=BM, KD=DM, угол BKM = углу BMK)
Неважно, какой из углов будет обозначен 1. По теоремам об углах, образованных двумя параллельными прямыми и секущей:
1. Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.
2. Если две параллельные прямые пересечены секущей, то соответственные углы равны.
3. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Следовательно, образуются 4 угла одной величины, 4 угла другой величины, и их сумма равна величине развернутого угла. (На рисунке приложения отмечены равные углы) ∠1+∠2=180° По условию ∠1 меньше ∠2 на 40° ⇒ ∠2=∠1+40°; ⇒ ∠1+(∠1+40°)=180° откуда ∠1=70°
Примечание: Если один из углов, образованных параллельными прямыми и секущей равен 90°, то все остальные углы равны ему.