1. Найдите диагональ квадрата, если его площадь равна 12.5. Формула площади квадрата через диагональ
d² = 12,5*2 = 25 ⇒ d = √25 = 5 Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52. Площадь прямоугольника: 13*52 = 676 Площадь квадрата: a² = 676; a = √676 = 26 Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30. S = 40*10*sin30° = 400*1/2 = 200 Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3, Площадь меньшего равна 3. Найдите площадь большого. Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате.
S₂ = 3*9 = 27 Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности. π≈3,14. Формула площади круга
Формула длины окружности
Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи), Центральный угол которого равен 90
3) Три Соединим все три вершины. Получился треугольник, две стороны которого - стороны параллелограмма, и третья - его диагональ так как, убрав у любого параллелограмма вершину, и стороны, которые проходят через нее, получаем треугольник, состоящий из двух сторон и диаг. паралл. Выбор расположения четвертой точки зависит от выбора стороны треуг., которая будет диагональю. Тогда возможны три варианта, так как у треуг. три стороны. Чтобы построить паралл. при заданной диагонали, достаточно из концов диагонали построить прямые, параллельные сторонам, лежащим против соответствующих вершин. Точка их пересечения - четвертая вершина паралл. 2) Периметр равен 10 смотри рисунок - треуг AKM - равноб так как KM || BC => KM=AK; ML = KB Тогда ML + KM = AK + KB ML+KM=5 P = 2(ML+KM)=10
Формула площади квадрата через диагональ
d² = 12,5*2 = 25 ⇒ d = √25 = 5
Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52.
Площадь прямоугольника: 13*52 = 676
Площадь квадрата: a² = 676; a = √676 = 26
Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30.
S = 40*10*sin30° = 400*1/2 = 200
Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3,
Площадь меньшего равна 3. Найдите площадь большого.
Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате.
S₂ = 3*9 = 27
Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности.
π≈3,14. Формула площади круга
Формула длины окружности
Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи),
Центральный угол которого равен 90
Формула площади сектора с центральным углом α
Площадь сектора равна 576
Соединим все три вершины.
Получился треугольник, две стороны которого - стороны параллелограмма, и третья - его диагональ так как, убрав у любого параллелограмма вершину, и стороны, которые проходят через нее, получаем треугольник, состоящий из двух сторон и диаг. паралл.
Выбор расположения четвертой точки зависит от выбора стороны треуг., которая будет диагональю. Тогда возможны три варианта, так как у треуг. три стороны.
Чтобы построить паралл. при заданной диагонали, достаточно из концов диагонали построить прямые, параллельные сторонам, лежащим против соответствующих вершин. Точка их пересечения - четвертая вершина паралл.
2) Периметр равен 10
смотри рисунок - треуг AKM - равноб так как KM || BC => KM=AK;
ML = KB
Тогда ML + KM = AK + KB
ML+KM=5
P = 2(ML+KM)=10