В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Тьома11
Тьома11
10.12.2021 08:29 •  Геометрия

Определите расстояние между точками а(8; а) и (2; а)

Показать ответ
Ответ:
мядель
мядель
28.08.2020 08:42
Площадь  произвольного четырёхугольника с диагоналями  ,    и острым углом    между ними (или их продолжениями), равна: площадь  произвольного выпуклого четырёхугольника равна: , где  ,    — длины диагоналей, a, b, c, d  — длины сторон.  :     где p  — полупериметр, а    есть полусумма противоположных углов четырёхугольника. (какую именно пару противоположных углов взять роли не играет, так как если полусумма одной пары противоположных углов равна  , то полусумма двух других углов будет    и  ). из этой формулы для вписанных 4-угольников следует  формула брахмагупты. особые случаи[править  |  править исходный текст] если 4-угольник и вписан, и описан, то  .если он описан, то площадь равна половине его периметра умноженная на радиус вписанной окружности   |  править исходный текст] в древности египтяне и некоторые другие народы использовали для определения площади четырёхугольника  неверную  формулу  — произведение полусумм его противоположных сторон a, b, c, d[1]: . для непрямоугольных четырехугольников эта формула даёт завышенное значение площади. можно предположить, что она использовалась только для определения площади почти прямоугольных участков земли. при неточном измерении сторон прямоугольника эта формула позволяет повысить точность результата за счет усреднения исходных измерений.
0,0(0 оценок)
Ответ:
shirowa234567815690
shirowa234567815690
11.09.2020 07:52
Геометрические фигуры в архитектуре Ни один из видов искусств так тесно не связан с геометрией как архитектура. Ле Корбюзье считал геометрию тем замечательным инструментом, который позволяет установить порядок в пространстве. Фигуры, которые он упоминает, являются теми математическими моделями, на базе которых строятся архитектурные формы.
Чаще всего в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. Конечно, можно говорить о соответствии архитектурных форм указанным геометрическим только приближенно, отвлекаясь от мелких деталей.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота