1: тр АВС - (уг С=90*) СН - высота ВС=16 см АВ = 20 см Найти: НВ - ?
Решение: 1) По т Пифагора к тр АВС: АС² = АВ²-ВС²; АС²=400-256 = 144; АС = 12 см 2) Пусть НВ = х (см), тогда АН=(20-х) см. Выразим катет НС из прямоугольных треугольников АНС и ВНС, в которых уг Н =90*. Получим уравнение: 144-(20-х)² = 256-х² 144-400+40х-х²=256-х² -256+40х=256 40х=512 х=512 : 40 х=12,8 (см) - проекция НВ катета ВС на гипотенузу АВ 2
Рассмотрим: АБС АБ=41 см АС=9 см АБ'=АС' + ВС' ( по т. Пифагора) ВС'=АБ' - АС' ВС' = 41' - 9' ВС'= 1681-81 ВС'=1600 ВС=40 см Р=АБ+БС+АС=41+40+9=90 см ('=в квадрате) ответ: Р=90 см. 3 т.к. диагонали ромба, пересекаясь, обазуют угол в 90 градусов и делятся пополам, то ром делится на 4 одинаковых прямоугольных треугольника. рассмотрим один из них. сторона ромба будет являться гипотенузой, тогда найдем ее по теореме пифагора: корень из (8*8+4*4)=4 корня из 54 Если известны все стороны трапеции, можно найти диагональ по формуле: d=√(c²+ab), где a и b - основания, с - боковая сторона.Пусть дана трапеция АВСД - равнобедренная. АД=21 см, ВС=11 см.АВ=СД=13 смАС=√(АВ²+ВС*АД)=√(13²+11*21)=√(169+231)=√400=20 см.ответ: 20 см.
5
х-наклонная у-наклонная , у=х+7h-высота от точки до прямойh=√x²-6² , иh=√(x+7)²-15² (√х²-6)=(√(х+7)²-15²)) , возведем обе части ур-я в квадратх²-6²=(х+7)²-15²х²-36=х²+14х+49-22514х=140х=10 сму=10+7=17 см
Высоты треугольника пересекаются в одной точке.
Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.
Уравнение прямой АВ найдем по формуле:
(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или
(X+4)/2=(Y-0)/-2 - каноническое уравнение =>
y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.
Условие перпендикулярности прямых: k1=-1/k => k1=1.
Тогда уравнение перпендикуляра к стороне АВ из вершины С
найдем по формуле:
Y-Yс=k1(X-Xс) или Y-2=X-2 =>
y=х (1) - это уравнение перпендикуляра СС1.
Уравнение прямой АС:
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или
(X+4)/6=(Y-0)/2 - каноническое уравнение =>
y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.
Условие перпендикулярности прямых: k1=-1/k => k1 = -3.
Тогда уравнение перпендикуляра к стороне АС из вершины В
найдем по формуле:
Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>
y=-3х-8 (2)- это уравнение перпендикуляра BB1.
Точка пересечения перпендикуляров имеет координаты:
х=-3х - 8 (подставили (1) в (2)) => х = -2.
Тогда y = -2.
ответ: точка пересечения высот совпадает с вершиной В(-2;-2)
треугольника, то есть треугольник прямоугольный с <B=90°.
Для проверки найдем длины сторон треугольника:
АВ=√(((-2-(-4))²+(-2)²) = 2√2.
ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.
АС=√(((2-(-4))²+2²) = 2√10.
АВ²+ВС² = 40; АС² = 40.
По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.
тр АВС - (уг С=90*)
СН - высота
ВС=16 см
АВ = 20 см
Найти:
НВ - ?
Решение:
1) По т Пифагора к тр АВС: АС² = АВ²-ВС²; АС²=400-256 = 144; АС = 12 см
2) Пусть НВ = х (см), тогда АН=(20-х) см. Выразим катет НС из прямоугольных треугольников АНС и ВНС, в которых уг Н =90*. Получим уравнение:
144-(20-х)² = 256-х²
144-400+40х-х²=256-х²
-256+40х=256
40х=512
х=512 : 40
х=12,8 (см) - проекция НВ катета ВС на гипотенузу АВ 2
Рассмотрим: АБС АБ=41 см АС=9 см АБ'=АС' + ВС' ( по т. Пифагора) ВС'=АБ' - АС' ВС' = 41' - 9' ВС'= 1681-81 ВС'=1600 ВС=40 см Р=АБ+БС+АС=41+40+9=90 см ('=в квадрате) ответ: Р=90 см.
3
т.к. диагонали ромба, пересекаясь, обазуют угол в 90 градусов и делятся пополам, то ром делится на 4 одинаковых прямоугольных треугольника. рассмотрим один из них.
сторона ромба будет являться гипотенузой, тогда найдем ее по теореме пифагора: корень из (8*8+4*4)=4 корня из 54
Если известны все стороны трапеции, можно найти диагональ по формуле: d=√(c²+ab), где a и b - основания, с - боковая сторона.Пусть дана трапеция АВСД - равнобедренная. АД=21 см, ВС=11 см.АВ=СД=13 смАС=√(АВ²+ВС*АД)=√(13²+11*21)=√(169+231)=√400=20 см.ответ: 20 см.
5
х-наклонная у-наклонная , у=х+7h-высота от точки до прямойh=√x²-6² , иh=√(x+7)²-15²
(√х²-6)=(√(х+7)²-15²)) , возведем обе части ур-я в квадратх²-6²=(х+7)²-15²х²-36=х²+14х+49-22514х=140х=10 сму=10+7=17 см