В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vidadisaf
vidadisaf
04.12.2022 11:58 •  Геометрия

Определите верные утверждения, характеризующие деятельность карагандинского металлургического комбината​


Определите верные утверждения, характеризующие деятельность карагандинского металлургического комбин

Показать ответ
Ответ:
miloy34
miloy34
13.10.2020 14:21
Для начала найдем отношение ВР/РС. Для этого:
Проведем  BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4  и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники  АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники  ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm  =  (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.

Втреугольнике авс на его медиане вм отмечена точка к так, что вк: км=4: 1. прямая ак пересекает стор
0,0(0 оценок)
Ответ:
platymax
platymax
18.12.2020 15:18

В треугольнике DFR провели прямую, параллельную стороне FR так, что она пересекает стороны DF и DR в точках S и Q, соответственно. Найди длину стороны DR, если площадь треугольника DSQ равна 42 см², SQ = 7 см, DS = 15 см, FR = 14 см.

4√37 см

Объяснение:

∠DSQ = ∠DFR как соответственные при пересечении SQ║FR секущей DF, ∠D - общий для треугольников DSQ и DFR, значит

ΔDSQ ~ ΔDFR по двум углам.

\dfrac{DS}{DF}=\dfrac{SQ}{FR}

DF=\dfrac{DS\cdot FR}{SQ}=\dfrac{15\cdot 14}{7}=15\cdot 2=30 см

Отношение площадей подобных треугольников равно квадрату отношения сходственных сторон.

\dfrac{S_{DSQ}}{S_{DFR}}=\left(\dfrac{SQ}{FR}\right)^2

\dfrac{42}{S_{DFR}}=\dfrac{7^2}{14^2}=\dfrac{1}{4}

S_{DFR}=42\cdot 4=168  см²

Площадь треугольника DFR можно вычислить так же по формуле:

S_{DFR}=\dfrac{1}{2}DF\cdot FR\cdot \sin\angle F

168=\dfrac{1}{2}\cdot 30\cdot 14\cdot \sin\angle F

168=210\cdot \sin\angle F
\sin\angle F=\dfrac{168}{210}=0,8

\cos\angle F=\sqrt{1-\sin^2\angle F}=\sqrt{1-0,64}=\sqrt{0,36}=0,6

Из треугольника DFR по теореме косинусов:

DR^2=DF^2+FR^2-2\cdot DF\cdot FR\cdot \cos\angle F

DR² = 30² + 14² - 2 · 30 · 14 · 0,6

DR² = 900 + 196 - 504 = 592

DR = √592 = 4√37 см


Упражнение 7 из 15 Реши задачу. В треугольнике DFR провели прямую, параллельную стороне FR так, что
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота