Определите взаимное расположение двух окружностей, по следующим данным и постройте чертеж к каждому условию.
1) Расстояние между центрами окружностей равно сумме их радиусов
2)Расстояние между центрами окружностей меньше суммы их радиусов.
3) Расстояние между центрами больше суммы двух радиусов.
4) Расстояние между центрами равно разности двух радиусов.
5) Расстояние между центрами окружностей равно нулю.
геометрия (9 класс)
Найти длину окружности ,описанной около равнобедренного треугольника с основанием 10 см и углом 30° при основании .
Дано: ∠A = ∠C =30 ° , AC=b =10 см
----------------------------
R - ?
решение : Можно разными но геометрия (9 класс)
→ рационально использовать теорема синусов :
a/sin∠A = b /sin∠B = c /sin∠C = 2R
Угол против основания ∠B =180° - (30°+30°) = 180° - 60° 120°
AC/sin∠B =2R ⇔ R = AC/2sin∠B
R = 10 /2sin(180° - 60°) =10/2sin60° =10/ (2*√3 / 2) =10 /√3 =( 10√3) /3
ответ: БИЛЕТ№1
1. отрезок -прямая, которая имеет начало и конец, обозначается с обоих сторон точками.
луч - это прямая линия, которая имеет начало, но не имеет конца.
угол - это геометрическая фигура, образованная 2-мя лучами
развернутый угол-это угол, стороны которого составляют прямую
2. если две стороны и угол между ними одного треугольника соответственно равны двум сторонам между ними другого треугольника, то такие треугольники равны
3. т.к. треугольник прямоугольный, а один из углов 30гр, то второй катет будет равен половине гипотенузы 12*2=24см
4.т.к треуг.АВС равноб. следовательно углы при основании равны, а т.к. угол 1 вертикальный углу ВАС, значит они равны
2 вертик угол ВС, а следовательно они равны
угол1 = углу ВАС, угол 2 - углу ВСА
следовательно углы =