Ор А Ang
І
В
С
A А
На рисунке.
правильная четырёхугольная усеченная пирамида ABCD A, B, C, D,
Стороны ее оснований равны 10 см и 5 см. Угол С1 СО равен 30°,
(Считай /2 = 1,41. ответ округляй до десятых.)
это вектор
и его длина равна
СМ.
1. Вектор, равный вектору ОВ
2. Вектор 01 B1
3. Длина вектора ОО равна
СМ.
увектору 01C1, и его длина равна
СМ.
А1. ответ: 4.
А2. ответ: 4.
А3. ответ: 3.
А4. ответ: 1.
В1. Дано: ΔАВС, АВ = ВС = АС + 5 см, Р = 34 см.
Найти: АВ.
Решение: Пусть АС = х см, тогда АВ = ВС = х + 5,
x + (x + 5) + (x + 5) = 34
3x + 10 = 34
3x = 24
x = 8
АС = 8 см
АВ = ВС = 8 + 5 = 13 см
ответ: боковая сторона 13 см.
В2. Дано: ΔАВС, АВ = АС, АМ - медиана, Pabc = 40 см, Pabm = 33 см.
Найти: АМ.
Pabm = 33 см
АВ + ВМ + АМ = 33
2 · (АВ + ВМ + АМ) = 66
Так как АВ = АС, а ВМ = СМ, то
2АВ + 2ВМ + 2АМ = 66
АВ + АС + ВС + 2АМ = 66
2АМ = 66 - (АВ + АС + ВС) = 66 - Pabc = 66 - 40 = 16
AM = 16/2= 8 см
С1. 1) Если сумма равных сторон равна 26 см, то боковые стороны равны по 13 см, а основание - 10 см.
2) Обозначим боковые стороны а и b, основание - с.
а + с = 26 см
Рabc = 2а + с = 36 см
с = 36 - 2а
с = 26 - а
26 - a = 36 - 2a
a = 10 см
c = 16 см
ответ: 13 см, 13 см, 10 см или 10 см, 10 см, 16 см.
Из треугольника ЕРН по Пифагору ЕН=√(PH²-PE²)=10√3.
Из треугольника ЕНМ по Пифагору ЕМ=√(ЕH²+НМ²)=√(300+600)=30.
Площадь грани ЕРМ=0,5*ЕМ*РЕ=0,5*30*10=150.
Площадь боковой поверхности пирамиды Sб=2*150+200√6 =300+200√6=100(3+2√6).