Основание ac равнобедренного треугольника abc равно 4. окружность радиуса 2,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания ac в его середине. найдите радиус окружности, вписанной в треугольник abc
324
Объяснение:
По определению параллелограмма BC∥AD, а прямая BD является их секущей. По свойству секущей ∠ADB=∠DBC=45°. ΔABD по определению равнобедренный, и имеет основание AD, а поскольку в равнобедренных треугольниках углы при основании равны, ∠BAD=45°. По свойству углов параллелограмма при стороне, ∠ABС=135° => ∠ABD=90°. Соответственно, по свойству противоположных углов параллелограмма, ∠BDC=90° и ∠BCD=45°. Проведём высоту DH к стороне BC в треугольнике ΔBDC. Поскольку он равнобедренный, его высота совпадает с медианой и биссектрисой, то есть DH=BH=CH=a и ∠BDH=∠CDH=∠BDC/2=45°. ΔDHC равнобедренный и прямоугольный, а, значит, по теореме Пифагора, 2a²=CD²=18² => a=9√2. BC=BH+CH=2a, DH=a BC - основание параллелограмма, а DH - его высота. Площадь параллелограмма равна их произведению по одной из расчётных формул, то есть BC*DH=2a²=18²=324
Вопрос №1:
1. Докажите, что равнобедреная трапеция Авсд и прямоугольник MBKД, изображенные на рисунке, равновеликие и равносоставленные
Объяснение:
Дано:
АВКD - Четырехугольник
⏢АВСD - Трапеция
▯МВКD - Прямоугольник
АВСD и МВКD - ?
Дан четырёхугольник АВКD
Опустим высоту СЕ⊥AD
ΔАВМ = ΔСКD = ΔЕСD
1. Равновеликие фигуры - фигуры, которые имеют одинаковую площадь.
1) ⏢АВСD = ΔАВМ + ΔЕСD + ☐МВСЕ
2) ▯МВКD = ΔЕСD + ΔСКD + ☐МВСЕ ⇒ ⏢
АВСD и ▯МВКD - имеют общий ☐МВСЕ и попарно одинаковые прямоугольные треугольники Δ ⇒ площадь ⏢АВСD и площадь ▯МВКD равны ⇒ РАВНОВЕЛИКИЕ
2. Две фигуры называются равносоставленными, если они могут быть разделены на одинаковое число попарно равных фигур.
Так как ⏢АВСD и ▯МВКD имеют один ☐МВСЕ и попарно одинаковые прямоугольные треугольники, у ⏢АВСD ΔАВМ = ΔЕСD, у ▯МВКD ΔЕСD = ΔСКD, то они равносоставленные
ответ: ⏢АВСD и ▯МВКD равновеликие и равносоставленные
Блин я не знаю ответа на №2 :(
Если где-то ошибка, то пишите в комменты (исправлю)
Удачи в учёбе :)