Рисунок см. во вложении. Все предыдущий автор верно описал. Просто небольшие пояснения. При продолжении меньшего катета АС до пересечения с окружностью получим точку N, причем КN - диаметр, т.к. угол КМN - прямой (KM||BC, как средняя линия). Вот и получился прям-ый тр-ик KMN, вписанный в окружность, подобный исходному, т.к угол NKM = углу ВАС( у них взаимно перпендикулярны стороны). Гипотенуза исходного тр-ка АВ=10 (по т. Пифагора), пусть KN = d - диаметр окр-ти, КМ = 4, как ср. линия исходного тр-ка. Теперь можно составить пропорцию: d/AB = KM/AC, или d/10 = 4/6 Отсюда:d = 20/3, а радиус: R = 10/3
Теперь можно составить пропорцию:
d/AB = KM/AC, или d/10 = 4/6
Отсюда:d = 20/3, а радиус: R = 10/3
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²