1) Из рисунка следует, что внутренние стороны треугольников основания являются средними линиями большого треугольника, так как соединяют середины сторон, и, следовательно, равны:
1/2 стороны, обозначенной 2 штрихами (у серого треугольника);
1/2 стороны, обозначенной 1 штрихом (у белого треугольника).
Таким образом, 3 стороны белого треугольника равны 3 сторонам серого треугольника, - значит, эти треугольники равны.
2) Фигура, обозначенная S, является параллелограммом, так как его противоположные стороны равны (это вытекает из выше доказанного равенства треугольников) и параллельны (средние линии параллельны основаниям). Следовательно, S в 2 раза больше площади серого треугольника:
26
Объяснение:
1) Из рисунка следует, что внутренние стороны треугольников основания являются средними линиями большого треугольника, так как соединяют середины сторон, и, следовательно, равны:
1/2 стороны, обозначенной 2 штрихами (у серого треугольника);
1/2 стороны, обозначенной 1 штрихом (у белого треугольника).
Таким образом, 3 стороны белого треугольника равны 3 сторонам серого треугольника, - значит, эти треугольники равны.
2) Фигура, обозначенная S, является параллелограммом, так как его противоположные стороны равны (это вытекает из выше доказанного равенства треугольников) и параллельны (средние линии параллельны основаниям). Следовательно, S в 2 раза больше площади серого треугольника:
S = 13 · 2 = 26
определим величину ребра вписанного правильного шестиугольника.
а = р / 6 = 60 / 6 = 10 см.
так как вписанный шестигранник правильный, воспользуемся формулой нахождения радиуса окружности, в которую вписан правильный многогранник.
r = a / (2 * sin(3600 / 2 * где
а – длина ребра многогранника;
n – количество граней многогранника.
r = 10 / (2 * sin(3600 / 2 * 6)) = 10 / (2 * sin300) = 10 см.
воспользуемся этой же формулой для вписанного квадрата.
10 = а / (2 * sin(3600 / 2 * 4)) = a / (2 * sin450).
а = 10 * 2 * sin450 = 20 * (√2/2) = 10 * √2 см.
ответ: сторона вписанного квадрата равна 10 * √2 см.