Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2
АВ =25,ВС= 30; BD - перпендикуляр проведенный к плоскости.
АB и ВС - проекции,т.к наклонная ВС больше АВ,то и проекция СD большеАD следовательно
CD - AD = 11.
Пусть проекция AD будет х,тогдаСD = x +11,
т.Пифагора: ВD²= AB² - AD²
BD² = BC²- ÇD² значит
АВ² - АD² = BC² - CD²
. x = 11, x + 11 = 29
снова используется т.Пифагора:
ВD² = AB²- AD²
BD²= 625 -324
BD² = 301
2.
ab =13,ac=15: BC =14: EO = 20
EO перпендикуляр к ВС, т.к это кратчайшее расстояние к ВС.
АО - проекция ЕО на плоскость ∆ АВС.
Углы АОС и АОВ= 90°
Рассмотрим ∆ АОС и ∆ АОВ, с общим катетом АО;
по т Пифагора найдем катет каждого ∆
АО² = АВ² - ВО²
АО² = АС² - ВО²,тогда
АВ² - (14- СО)²= АС²- СО²
13² - (14 - СО)² = 15² - СО
13² - 14² + 28 × СО - СО²= 15² - СО²
28× СО = 196 +225-169
СО =252/28
СО = 9, тогда ВО = 14 - 9 = 5
теперь найдем АО² = АВ² - ВО² = 13² - 5²= 144: АО = 12
теперь определим величину отрезка АЕ
АЕ² = ЕО² - АО²= 20² -12² = 400 - 144 =256
АЕ = 16