Основа піраміди — правильний трикутник. Одна бічна грань піраміди перпендикулярна до основи, а дві інші — нахилені до неї під кутом . Висота піраміди дорівнює Н. Знайдіть бічну поверхню піраміди.
Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
2) ответ: Пусть прямые а и d параллельны прямой с. Можно воспользваться доказательством от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т.е. допустим, что прямые а и dне парелльны, а, значит, перезекаются в некторой точке о. Тогда через точку о проходят 2 прямые а и d, параллельные прямой с, чтио протьиворечит аксиоме параллельных прямых. Таким образо, наше предположение неверно, а, следвательно, прямые а и d параллельны. 5) Пусть прі пересеченіі прямых а і д секуўей АВ внутреніе накрест лежаўіе углы 1 і 2 раны, Докажем, что а пораллельна д. Еслі угол 1= углу 2= 90, то а перпендікулярна АВ и д перепендикулярна АВ, значит с силу теоремы 1 следует, что а параллельна д, Если угол 1= углу 2 и не равен 90, то из середины О трезка АВ проведён отрезок оф перпендикулярен а. На прямой д отложим отрезок ВФ1= АФ и проведём отрезок ОФ!. Заметим, что треугольник офа=треугольнику ОФ1В по двум сторонам и углу между ними
Так как угол 3= равен углу 4, а точки А,В и лежат на1 прямой, т точки Ф1, Ф и Отакже лежат на 1 прямой
Из равенства угол5=углу 6следует, что угол 6=90, получим. что а перпендикулярна ФФ1 и д перпендикулярна ФФ1, а параллельна д
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.
2) ответ: Пусть прямые а и d параллельны прямой с. Можно воспользваться доказательством от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т.е. допустим, что прямые а и dне парелльны, а, значит, перезекаются в некторой точке о. Тогда через точку о проходят 2 прямые а и d, параллельные прямой с, чтио протьиворечит аксиоме параллельных прямых. Таким образо, наше предположение неверно, а, следвательно, прямые а и d параллельны. 5) Пусть прі пересеченіі прямых а і д секуўей АВ внутреніе накрест лежаўіе углы 1 і 2 раны, Докажем, что а пораллельна д. Еслі угол 1= углу 2= 90, то а перпендікулярна АВ и д перепендикулярна АВ, значит с силу теоремы 1 следует, что а параллельна д, Если угол 1= углу 2 и не равен 90, то из середины О трезка АВ проведён отрезок оф перпендикулярен а. На прямой д отложим отрезок ВФ1= АФ и проведём отрезок ОФ!. Заметим, что треугольник офа=треугольнику ОФ1В по двум сторонам и углу между ними
Так как угол 3= равен углу 4, а точки А,В и лежат на1 прямой, т точки Ф1, Ф и Отакже лежат на 1 прямой
Из равенства угол5=углу 6следует, что угол 6=90, получим. что а перпендикулярна ФФ1 и д перпендикулярна ФФ1, а параллельна д