основа піраміди ромб з кутом альфа. Двогранні кути піраміди при ребрах основи дорівнюють фі. Знайдіть площу бічної поверхні піраміди, якщо її висота дорівнює Н
Первый вопрос, который надо выяснить - в каком отношении точка O делит BM. (В общем случае ответ дает теорема Чевы (и Ван-Обеля), но в данном случае есть уникальная возможность сразу получить ответ.) Я продлеваю сторону AB за точку B до точки D, так, что AB = BD; точку D я соединяю с вершиной C. В треугольнике ADC BM - средняя линия, то есть BM II DC; кроме того, отрезок CB играет роль медианы. Поскольку BK:KC = 1:2; точка K - центроид треугольника ADC (ну, проще говоря, точка пересечения медиан). Поэтому AK - часть медианы ADC (при продолжении AK за точку K эта прямая разделит DC пополам в точке, которую я обозначу N). Само собой, это означает, что AK делит пополам и BM (там подобные треугольники ANC и AOM, AND и AOB, и CN = ND => MO = OB). Итак, точка O делит BM пополам. (Кажется, я так длинно изложил, но "в голове" это всего один шажок). Дальше все просто - из полученного следует, что от точки O до BC расстояние в 2 раза меньше, чем от точки M до BC. И BK = BC/3; Поэтому площадь BOK равна (1/2)*(1/3) = 1/6 от площади BMC; (ну, высота к основанию меньше в 2 раза, а само основание - в 3, роль "основания" играют BC и BK) а площадь BMC составляет 1/2 от площади ABC (аналогично предыдущему замечанию в скобках, только тут "основания" - AM и AC, а высота - расстояние от B до AС, в этом случае высота общая) ответ 1/12
В сечении получается ромб. Отрезок АК = 6*(1/3) = 2. Сторона ромба равна √(4²+2²) = √(16+4) = √20 = 2√5. Найдём диагонали ромба. Так как плоскость сечения параллельна диагонали основания призмы АС, то она пересекает ребро СС₁ в точке Е на таком же расстоянии, что и ребро АА₁: СЕ - АК = 2. Поэтому диагональ ромба ЕК = АС = 4√2. Расстояние от точки А до линии пересечения плоскости основания и заданной плоскости (точка К₁) равно половине диагонали основания: АК₁ = ОВ = 4*cos45° = 4*(√2/2) = 2√2. Расстояние КК₁ равно половине диагонали искомого сечения. КК₁ = √(АК²+ АК₁²) = √(2²+(2√2)²) = √(4+8) = √12 =2√3. Вторая диагональ ВМ = 2*КК₁ = 2*2√3 = 4√3. Площадь сечения ромба ВЕМК равна: S = (1/2)d₁*d₂ = (1/2)*(4√2)*(4√3) = 8√6 = 19.59592 кв.ед.
Эту же площадь можно определить другим Угол наклона плоскости заданного сечения равен: α = arc tg(2/(2√2) = arc tg(1/√2) = arc tg 0.707107= 0.61548 радиан = 35.26439 градуса. Косинус этого угла равен 0.816497. Тогда искомая площадь равна площади основания призмы, делённой на косинус угла α: S = (4*4)/0.816497 = 19.59592 кв.ед.
(В общем случае ответ дает теорема Чевы (и Ван-Обеля), но в данном случае есть уникальная возможность сразу получить ответ.)
Я продлеваю сторону AB за точку B до точки D, так, что AB = BD; точку D я соединяю с вершиной C.
В треугольнике ADC BM - средняя линия, то есть BM II DC; кроме того, отрезок CB играет роль медианы. Поскольку BK:KC = 1:2; точка K - центроид треугольника ADC (ну, проще говоря, точка пересечения медиан). Поэтому AK - часть медианы ADC (при продолжении AK за точку K эта прямая разделит DC пополам в точке, которую я обозначу N).
Само собой, это означает, что AK делит пополам и BM (там подобные треугольники ANC и AOM, AND и AOB, и CN = ND => MO = OB).
Итак, точка O делит BM пополам.
(Кажется, я так длинно изложил, но "в голове" это всего один шажок).
Дальше все просто - из полученного следует, что от точки O до BC расстояние в 2 раза меньше, чем от точки M до BC. И BK = BC/3;
Поэтому площадь BOK равна (1/2)*(1/3) = 1/6 от площади BMC; (ну, высота к основанию меньше в 2 раза, а само основание - в 3, роль "основания" играют BC и BK)
а площадь BMC составляет 1/2 от площади ABC (аналогично предыдущему замечанию в скобках, только тут "основания" - AM и AC, а высота - расстояние от B до AС, в этом случае высота общая)
ответ 1/12
Отрезок АК = 6*(1/3) = 2.
Сторона ромба равна √(4²+2²) = √(16+4) = √20 = 2√5.
Найдём диагонали ромба.
Так как плоскость сечения параллельна диагонали основания призмы АС, то она пересекает ребро СС₁ в точке Е на таком же расстоянии, что и ребро АА₁: СЕ - АК = 2.
Поэтому диагональ ромба ЕК = АС = 4√2.
Расстояние от точки А до линии пересечения плоскости основания и заданной плоскости (точка К₁) равно половине диагонали основания: АК₁ = ОВ = 4*cos45° = 4*(√2/2) = 2√2.
Расстояние КК₁ равно половине диагонали искомого сечения.
КК₁ = √(АК²+ АК₁²) = √(2²+(2√2)²) = √(4+8) = √12 =2√3.
Вторая диагональ ВМ = 2*КК₁ = 2*2√3 = 4√3.
Площадь сечения ромба ВЕМК равна:
S = (1/2)d₁*d₂ = (1/2)*(4√2)*(4√3) = 8√6 = 19.59592 кв.ед.
Эту же площадь можно определить другим
Угол наклона плоскости заданного сечения равен:
α = arc tg(2/(2√2) = arc tg(1/√2) = arc tg 0.707107= 0.61548 радиан = 35.26439 градуса.
Косинус этого угла равен 0.816497.
Тогда искомая площадь равна площади основания призмы, делённой на косинус угла α:
S = (4*4)/0.816497 = 19.59592 кв.ед.