Основа піраміди SABCD - прямокутник ABCD, AB <BC. ребро SD перпендикулярне до площини основи. серед відрізків SA, SB, SC, SD укажіть наименьший і найбільший.
1) Вписанный угол АВС равен половине дуги, на которую опирается. Следовательно, дуга АС равна:
30° · 2 = 60°
2) Соединим точки А и С с центром окружности О.
∠АОС - центральный. Центральный угол равен дуге, на которую опирается, то есть ∠АОС = 60°.
3) В треугольнике АОС АО = ОС = 22 см, как радиусы окружности; следовательно, данный треугольник является равнобедренным, и углы при его основании равны:
∠ОАС = ∠АСО = (180° - ∠АОС) : 2 = (180° - 60°) : 2 = 120° : 2 = 60° - а это значит, что ΔАОС - равносторонний, так как все его углы равны 60°.
Одна сторона прямоугольника равна х, х>0, вторая у, у>0. Площадь прямоугольника S = xy = 2 откуда y = 2/x. Рассмотрим функцию:
P(x)=2х+2у=2х+2*2/х=2х+4/х
Найдем производную этой функции, приравняем к нулю, получим критические точки
2-(4/х²)=0, откуда 4-2х²=0
х²≠0, х=±√2
Поскольку отрицательный корень x = -√2 не подходит по смыслу задачи, то берем критическую точку х=√2, разбиваем ею числовую ось и проверяем, какие знаки принимает производная на интервалах (0;√2);(√2;+∞)
(0)___-(√2)+
Производная функции при переходе через точку x = √2 меняет знак с минуса на плюс, поэтому х=√2 - точка минимума функции.
у=2/√2=√2
А наименьший периметр прямоугольника будет равен 4√2, если обе стороны равны √2, т.е. когда прямоугольник превратится в квадрат.
АС = 22 см
Объяснение:
1) Вписанный угол АВС равен половине дуги, на которую опирается. Следовательно, дуга АС равна:
30° · 2 = 60°
2) Соединим точки А и С с центром окружности О.
∠АОС - центральный. Центральный угол равен дуге, на которую опирается, то есть ∠АОС = 60°.
3) В треугольнике АОС АО = ОС = 22 см, как радиусы окружности; следовательно, данный треугольник является равнобедренным, и углы при его основании равны:
∠ОАС = ∠АСО = (180° - ∠АОС) : 2 = (180° - 60°) : 2 = 120° : 2 = 60° - а это значит, что ΔАОС - равносторонний, так как все его углы равны 60°.
Таким образом:
АС = АО = ОС = 22 см
ответ: АС = 22 см
Одна сторона прямоугольника равна х, х>0, вторая у, у>0. Площадь прямоугольника S = xy = 2 откуда y = 2/x. Рассмотрим функцию:
P(x)=2х+2у=2х+2*2/х=2х+4/х
Найдем производную этой функции, приравняем к нулю, получим критические точки
2-(4/х²)=0, откуда 4-2х²=0
х²≠0, х=±√2
Поскольку отрицательный корень x = -√2 не подходит по смыслу задачи, то берем критическую точку х=√2, разбиваем ею числовую ось и проверяем, какие знаки принимает производная на интервалах (0;√2);(√2;+∞)
(0)___-(√2)+
Производная функции при переходе через точку x = √2 меняет знак с минуса на плюс, поэтому х=√2 - точка минимума функции.
у=2/√2=√2
А наименьший периметр прямоугольника будет равен 4√2, если обе стороны равны √2, т.е. когда прямоугольник превратится в квадрат.