Основа прямої призми - рівнобедрений трикутник, бічна сторона якого дорівнює b, а кут при основі- a. Діагональ бічної грані, яка містить бічну сторону цього трикутника, нахилена до площини основи під кутом гамма. Знайдіть об‘єм призми
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Вектор а пропорционален вектору, полученному векторным умножением векторов b и c.
Находим d = b x c по Саррюса:
i j k| i j
-4 -7 5| -4 -7
-8 -8 7| -8 -8 = -49i - 40j + 32k + 28j + 40i - 56k = -9i - 12j - 24k.
Получили вектор d, кратный вектору а:
d = (-9; -12; -24). его модуль равен:
|d| = √((-9)² + (-12)² + (-24)²) = √(81 + 144 + 576) = √801.
Подкоренное выражение кратно заданному 801/89 = 9.
То есть модуль а в 3 раза меньше.
Но ортогональным вектор а может иметь как в одном направлении, так и в противоположном.
Поэтому имеются 2 решения:
a = (-3; -4; -8),
(3; 4; 8).
Точка B(3,-2,2)
а) параллельна плоскости Oyz.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Подробнее - на -