Основа прямої призми — трикутник зі стороною с і прилеглими до неї кутами α і β. Діагональ бічної грані, що проходить через сторону основи, яка протилежна куту α, нахилена до площини основи під кутом γ. Знайдіть висоту призми.
Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
пусть имеем треугольник abc, ch- высота и cm - медиана
угол мсн = 76 градусов по условию
в прямоугольном треугольнике сmn cумма острых углов смн, мсн равна 90 градусов, то есть угол смн = 90 – угол мсн = 90 – 76 = 14 градусов
треугольник амс равнобедренный, см равна половине гипотенузы , а ам равна половине гипотенузы, так как см - медиана. отсюда следствие, что угол саm равен углу асм по свойству углов при основании равнобедренного треугольника.
пусть имеем треугольник abc, ch- высота и cm - медиана
угол мсн = 76 градусов по условию
в прямоугольном треугольнике сmn cумма острых углов смн, мсн равна 90 градусов, то есть угол смн = 90 – угол мсн = 90 – 76 = 14 градусов
треугольник амс равнобедренный, см равна половине гипотенузы , а ам равна половине гипотенузы, так как см - медиана. отсюда следствие, что угол саm равен углу асм по свойству углов при основании равнобедренного треугольника.
угол amc = 180-14=166 градуса
угол сam +угол mca=180-166=14
угол сam =угол mca=14/2=7 градусов
угол сba=90-7=83 градуса