Основа прямої призми — трикутник зі стороною с і прилеглими до неї кутами α і β. Діагональ бічної грані, що проходить через сторону основи, яка протилежна куту α, нахилена до площини основи під кутом γ. Знайдіть висоту призми.
Точка О2 - центр вписанной окружности в тр-ник АВС. Точка О1 - центр заданной окружности. Около тр-ка АВС опишем окружность. АО2, ВО2 и СО2 - биссектрисы соответствующих углов. Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. ∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2. ∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине. Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный. КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности. Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности. Доказано.
Проведем сечение конуса плоскостью, проходящей через высоту. Получится равнобедренный треугольник с основанием 12 и высотой 8. Рассмотрим "половинку" этого треугольника - прямоугольный треугольник с катетами, являющимися высотой конуса и радусом основания. Из него находим длину образующей - это гипотенуза этого треугольника. То есть, образующая равна 10 (√(64+36)). Проведем высоту из прямого угла к гипотенузе этого треугольника - это и есть искомое расстояние. Рассмотрим прямоугольный треугольник, в котором радиус основания является гипотенузой, а один из катетов - искомая высота. Этот треугольник подобен "половинке" первоначального треугольника, так как у него равны все углы (один - общий - между образующей и радиусом основания, второй - 90°, значит, равен и третий). А, значит, отношение искомой высоты к радусу основания равно отношению высоты конуса к образующей, то есть искомая высота (расстояние от центра основания до образующей) равна: 8/10*6=4,8 см.
Около тр-ка АВС опишем окружность.
АО2, ВО2 и СО2 - биссектрисы соответствующих углов.
Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К.
∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2.
∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине.
Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный.
КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности.
Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают.
О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности.
Доказано.
Получится равнобедренный треугольник с основанием 12 и высотой 8. Рассмотрим "половинку" этого треугольника - прямоугольный треугольник с катетами, являющимися высотой конуса и радусом основания.
Из него находим длину образующей - это гипотенуза этого треугольника. То есть, образующая равна 10 (√(64+36)).
Проведем высоту из прямого угла к гипотенузе этого треугольника - это и есть искомое расстояние.
Рассмотрим прямоугольный треугольник, в котором радиус основания является гипотенузой, а один из катетов - искомая высота.
Этот треугольник подобен "половинке" первоначального треугольника, так как у него равны все углы (один - общий - между образующей и радиусом основания, второй - 90°, значит, равен и третий).
А, значит, отношение искомой высоты к радусу основания равно отношению высоты конуса к образующей, то есть искомая высота (расстояние от центра основания до образующей) равна:
8/10*6=4,8 см.