В равностороннем треугольнике все стороны равны между собой, все углы равны 60°. а биссектриса является и медианой и высотой. Поэтому она делит такой треугольник на два равных прямоугольных.
Примем сторону треугольника равной а. Тогда высота - один катет, половина стороны - другой катет, сторона - гипотенуза.
По т.Пифагора а²=(a/2)²+h²
откуда а²=4h²/3
Заменив в этом выражение h на 12√3, получим
а²=4•12*•3/3=4•12², откуда
а=√(4•12*)=2•12=24 (ед. длины)
-----------------
Короткое решение:
Биссектриса (медиана, высота) равностороннего треугольника h=а•sin60°, откуда
Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
В равностороннем треугольнике все стороны равны между собой, все углы равны 60°. а биссектриса является и медианой и высотой. Поэтому она делит такой треугольник на два равных прямоугольных.
Примем сторону треугольника равной а. Тогда высота - один катет, половина стороны - другой катет, сторона - гипотенуза.
По т.Пифагора а²=(a/2)²+h²
откуда а²=4h²/3
Заменив в этом выражение h на 12√3, получим
а²=4•12*•3/3=4•12², откуда
а=√(4•12*)=2•12=24 (ед. длины)
-----------------
Короткое решение:
Биссектриса (медиана, высота) равностороннего треугольника h=а•sin60°, откуда
a=h:sin60°
a=12√3:(√3/2)=24