МР - высота т.е. он перпендикулярна основанию, следовательно угол МРО=90
МО - диогональ явл биссектрисой значит она делит угол пополам : РМО = ОМН.
Следовательно тругольник РОМ - равно бедренный: угол Р=90гр, углы М = О = 45гр. и МР = РО = 9м.
ПРовелем еще одну высоту ОТ = 9м, тогда получится квадрат МТОР , со сторонами 9м.
ТН=18-9=9м
Треугольники МРО = МОТ = ОТМ, значит все углы равны, значит угол МОТ = 45гр,
Теперь мы можем найти угол КОН = 45+45+45 =135гр.
В Паралелограмме напротив лежащие угла равны, следовательно
углы КМН = КОН = 135гр.
УГЛы МКО = МНО = 360 - 2*135 = 90:2 = 45гр
Вот а если чесно к концу я поняла что это не верно, подумай может после какоко нибудь моего действия поймешь где ошибка
МР - высота т.е. он перпендикулярна основанию, следовательно угол МРО=90
МО - диогональ явл биссектрисой значит она делит угол пополам : РМО = ОМН.
Следовательно тругольник РОМ - равно бедренный: угол Р=90гр, углы М = О = 45гр. и МР = РО = 9м.
ПРовелем еще одну высоту ОТ = 9м, тогда получится квадрат МТОР , со сторонами 9м.
ТН=18-9=9м
Треугольники МРО = МОТ = ОТМ, значит все углы равны, значит угол МОТ = 45гр,
Теперь мы можем найти угол КОН = 45+45+45 =135гр.
В Паралелограмме напротив лежащие угла равны, следовательно
углы КМН = КОН = 135гр.
УГЛы МКО = МНО = 360 - 2*135 = 90:2 = 45гр
Вот а если чесно к концу я поняла что это не верно, подумай может после какоко нибудь моего действия поймешь где ошибка
1,6м 1,6м 3,2м АС= СВ
АО = ОС
Найти: АВ, АС, АО, ОВ
Решение:
АС = СВ = 3,2(см) (по условию)
АВ = АС + СВ = 3,2 + 3,2 = 6,4 (см),т.к. АС +СВ по усл.задачи.
АС = АО + ОС; АО=ОС (по условию), значит АО = ОС = АС : 2 = 3,2 : 2 = 1,6(см)
ОВ = ОС + СВ = 1,6 + 3,2 = 4,8 (см)