Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
а) Заметим, что — центральный, а — его биссектриса, тогда — вписанный угол. Аналогично Поскольку и , то по двум равным углам треугольники и подобны, что и требовалось доказать.
б) Заметим, что верно, поскольку , тогда по теореме, обратной теореме Пифагора — прямоугольный, Найдем высоту , проведенную из Поскольку , коэффицент подобия равен Расстояние от точки B до прямой MK, равное высоте , проведенной из вершины , равно произведению коэффицента подобия и высоты
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
Б
Объяснение:
а) Заметим, что — центральный, а — его биссектриса, тогда — вписанный угол. Аналогично Поскольку и , то по двум равным углам треугольники и подобны, что и требовалось доказать.
б) Заметим, что верно, поскольку , тогда по теореме, обратной теореме Пифагора — прямоугольный, Найдем высоту , проведенную из Поскольку , коэффицент подобия равен Расстояние от точки B до прямой MK, равное высоте , проведенной из вершины , равно произведению коэффицента подобия и высоты
ответ: б) 84
¬
25