Основа рівнобедреного трикутника відноситься до бічної сторони як 4 до 3 , а висота проведена до основи дорівнює 30 см. знайти на які відрізки цю висоту ділить бісектриса кута при основі
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора: a2 + a2 = 52 2a2 = 25 a = √12,5 Высота боковой грани (обозначим как h) тогда будет равна: h2 + 12,5 = 42 h2 + 12,5 = 16 h2 = 3,5 h = √3,5 Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания S = 2a2 + 4ah S = 25 + 4√12,5 * √3,5 S = 25 + 4√43,75 S = 25 + 4√(175/4) S = 25 + 4√(7*25/4) S = 25 + 10√7 ≈ 51,46 см2 . ответ: 25 + 10√7 ≈ 51,46 см2 .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:
a2 + a2 = 52
2a2 = 25
a = √12,5
Высота боковой грани (обозначим как h) тогда будет равна:
h2 + 12,5 = 42
h2 + 12,5 = 16
h2 = 3,5
h = √3,5
Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания
S = 2a2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см2 .
ответ: 25 + 10√7 ≈ 51,46 см2 .
Из формулы объема шара V=4/3ПR^3 находим радиусы обоих шаров
2= 4/3ПR^3 3= 4/3ПR^3
6= 4ПR^3 9= 4ПR^3
R^3 =6/ (4П) R^3 =9/ (4П)
R1=кубический корень из 6/ (4П ) R2=кубический корень из 9/ (4П)
Находим площади поверхности каждого шара S=4 ПR^2
S1= 4 П*( кубический корень из 6/ (4П ) ^2 = 4 П * кубический корень из 36/(16П^2)
S2= 4 П*( кубический корень из 9/ (4П ) ^2 = 4 П * кубический корень из 81/(16П^2)
Находим отношение
S1 4 П*( кубический корень из 6/ (4П ) ^2 = 4 П * кубический корень из 36/(16П^2)
__ =
S2 4 П*( кубический корень из 9/ (4П ) ^2 = 4 П * кубический корень из 81/(16П^2)
= кубический корень из ( 36/ 81)= кубический корень из ( 4/ 9)
(Стопроцентность решения не гарантирую)