Основа й бічна сторона рівнобелреного трикутника MXD(MX=N відповідно дорінюють 20 см і 11см основа трикутника подібного заданого дорівнюють 5 см знайти периметр подібного трикутника
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
Равноудалены - значит, расстояния (перпендикуляры, опущенные один на медиану, а другой - на ее продолжение) от этих вершин до медианы(ее продолжения) равны. Получаются 2 прямоугольных треугольника, у которых гипотенузой является половина стороны, на которую опущена медиана. Значит, эти гипотенузы равны. Равны и острые углы(как вертикальные), образованные медианой и гипотенузой. Следовательно, треугольники равны ( по первому признаку, т.к. и другая пара острых углов равна - острые углы в сумме составляют 90 градусов). Значит, равны их катеты, лежащие против вертикальных углов и являющиеся расстояниями от вершин до медианы.
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.