1. Касательные проведнные с одной точки равны между собой, поэтому
AC = AB = 12 см.
По теореме Пифагора
AO=корень(CO^+AC^2)=корень(9^2+12^2)=15 см
ответ: 12 см, 15 см
2. Извини, но незнаю
3. Хорды MN и PK пересекаются в точке E так, что ME = 12 см, NE = 3 см, PE = KE. Найдите PK.
По свойству хорд
ME*NE=PE*KE
Пусть PE = KE=х см
Тогда x^2=12*3=36
x>0, поєтому х=6 см
PK=PE+KE=6см+6см=12 см
ответ:12 см
4.Треугольник ОАВ равнобедренный, ОА=ОВ=16 см (радиусы);
∠А=∠В=30° - по условию;
ОН - высота ОАВ, равна 16/2=8 см (катет против угла 30°);
АВ=2*АН=2*√(16²-8²)=16√3 см.
Треугольник СОВ равнобедренный, ОС=ОВ=16 см (радиусы);
∠С=∠В=45° ⇒ ∠О=90° - прямоугольный ⇒ СВ=√(16²+16²)=16√2 см.
АВ=16√3 см;
ВС=16√2 см.
1. 10 см.
2. BD=AC=10 см.
Объяснение:
Р ABC=AB+BC+AC;
AB=AD+BD; BC=CL+BL; AC=AK+CK;
P AKD=AK+KD+AD;
P BDL=BD+BL+DL;
Замечаем, что KD=CL и DL=KC;
В Р AKD заменим KD на CL;
В P BDL заменяем DL на KC.
Получаем Р AKD + P BDL=AK+CL+AD + DB+BL+KC=10;
AD+DB=AC; CL+BL=BC; FR+CK=AC.
И в итоге Р ABC=10 см.
***
2. Пусть меньший угол равен х. Тогда больший равен 2х.
Знаем, что угол А=90*.
х+2х=90*;
3х=90*;
х=30* - меньший угол;
Больший угол равен 2х=2*30=60*.
DA/AC=Sin30*;
AC=DA/Sin30*=5/(1/2)=5*2=10 см.
Так как у прямоугольника диагонали равны, то BD=AC=10 см.
1. Касательные проведнные с одной точки равны между собой, поэтому
AC = AB = 12 см.
По теореме Пифагора
AO=корень(CO^+AC^2)=корень(9^2+12^2)=15 см
ответ: 12 см, 15 см
2. Извини, но незнаю
3. Хорды MN и PK пересекаются в точке E так, что ME = 12 см, NE = 3 см, PE = KE. Найдите PK.
По свойству хорд
ME*NE=PE*KE
Пусть PE = KE=х см
Тогда x^2=12*3=36
x>0, поєтому х=6 см
PK=PE+KE=6см+6см=12 см
ответ:12 см
4.Треугольник ОАВ равнобедренный, ОА=ОВ=16 см (радиусы);
∠А=∠В=30° - по условию;
ОН - высота ОАВ, равна 16/2=8 см (катет против угла 30°);
АВ=2*АН=2*√(16²-8²)=16√3 см.
Треугольник СОВ равнобедренный, ОС=ОВ=16 см (радиусы);
∠С=∠В=45° ⇒ ∠О=90° - прямоугольный ⇒ СВ=√(16²+16²)=16√2 см.
АВ=16√3 см;
ВС=16√2 см.
1. 10 см.
2. BD=AC=10 см.
Объяснение:
Р ABC=AB+BC+AC;
AB=AD+BD; BC=CL+BL; AC=AK+CK;
P AKD=AK+KD+AD;
P BDL=BD+BL+DL;
Замечаем, что KD=CL и DL=KC;
В Р AKD заменим KD на CL;
В P BDL заменяем DL на KC.
Получаем Р AKD + P BDL=AK+CL+AD + DB+BL+KC=10;
AD+DB=AC; CL+BL=BC; FR+CK=AC.
И в итоге Р ABC=10 см.
***
2. Пусть меньший угол равен х. Тогда больший равен 2х.
Знаем, что угол А=90*.
х+2х=90*;
3х=90*;
х=30* - меньший угол;
Больший угол равен 2х=2*30=60*.
DA/AC=Sin30*;
AC=DA/Sin30*=5/(1/2)=5*2=10 см.
Так как у прямоугольника диагонали равны, то BD=AC=10 см.