Основание наклонного параллелепипеда — квадрат со стороной 9 см. Боковое ребро 1 = 3 см со сторонами и образовало равные острые углы. Определи длину диагонали 1 (результат округли до одной десятой).
1. Найдем сторону ромба 300:4=75, так как стороны ромба равны
2. диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно треугольник АВО - прямоугольный и АО:BO=1,5:2
Пусть х - коэффициент пропорциональности Тогда по теореме Пифагора АВ^2=АО^2+BO^2 75^2=(1,5х)^2+(2x)^2 х=30 и х=-30( не подходит, так как значение отрицательное)
тогда диагонали ромба АС=90 , а BD=120
Площадь ромба S= 0,5 * АС*ВD=0,5*90*120=5400 с другой стороны площадь ромба S=АВ*H 5400=75*h, где h - высота h=5400/75 h=72
1)(х-9)^2+(у+1)^2+z^2=7^2 центр (9;-1;0) R=7 (немного не понятно в первой скобкие (х-9)или (х+9),если (+),то первая воордината по оси х будет с о знаком (-) .просто (х 9) не должно быть.) 2)А (-3;0;4) R =8 (x+3)^2+y^2+(z-4)^2=64 3)(x-4)^2+(y+6)^2+z^2=9 A (4;-3;1) подставим значения точки А х=4,у=-3,z=1 в уравнение сферы (4-4)^2+(-3+6)^2+1^2=9 0+9+1=9 это не верно,значит точка А не лежит на сфере.10>9 значит точка А лежит за сферой. 4)х^2+у^2+ z^2+2z -2x=7 (x^2-2x)+y^2+(z^2+2z)-7==0 (x^2-2x+1)+y^2+(z^2+2z+1)-9=0 (x-1)^2+y^2+(z+1)^2=9 центр (1;0-1) R=3
300:4=75, так как стороны ромба равны
2. диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно треугольник АВО - прямоугольный и АО:BO=1,5:2
Пусть х - коэффициент пропорциональности
Тогда по теореме Пифагора
АВ^2=АО^2+BO^2
75^2=(1,5х)^2+(2x)^2
х=30 и х=-30( не подходит, так как значение отрицательное)
тогда диагонали ромба
АС=90 , а BD=120
Площадь ромба
S= 0,5 * АС*ВD=0,5*90*120=5400
с другой стороны площадь ромба
S=АВ*H
5400=75*h, где h - высота
h=5400/75
h=72
ответ 72
центр (9;-1;0) R=7
(немного не понятно в первой скобкие (х-9)или
(х+9),если (+),то первая воордината по оси х будет с о знаком (-) .просто (х 9) не должно быть.)
2)А (-3;0;4) R =8
(x+3)^2+y^2+(z-4)^2=64
3)(x-4)^2+(y+6)^2+z^2=9 A (4;-3;1)
подставим значения точки А х=4,у=-3,z=1 в уравнение сферы
(4-4)^2+(-3+6)^2+1^2=9
0+9+1=9 это не верно,значит точка А не лежит на сфере.10>9 значит точка А лежит за сферой.
4)х^2+у^2+ z^2+2z -2x=7
(x^2-2x)+y^2+(z^2+2z)-7==0
(x^2-2x+1)+y^2+(z^2+2z+1)-9=0
(x-1)^2+y^2+(z+1)^2=9
центр (1;0-1) R=3