Основание параллелепипеда abcd - параллелограмм со сторонами 12 см и 14 см и углом равным 120 градусам. точки k ,l ,m-середины
ребер ab a1b1 и a1d1 соответственно. постройте сечение параллелепипеда плоскостью, проходящей через точки k, l, m и найдите сечения, если bb1=13 см
ответ: вторая высота равна либо дм , либо 6 дм .
ΔАВС , АС=18 дм , АВ=12 дм , СМ ⊥ АВ , ВР ⊥ АС .
Одна из высот равна 4 дм .
Так как в условии не сказано, какая высота равна 4 дм , то рассмотрим два случая .
1) Пусть задана высота СМ=4 дм .
Запишем, чему равна площадь ΔАВС в двух вариантах.
S=0,5*AB*CM = 0,5*AC*BP ⇒ АВ*СМ=АС*ВР .
Заменим стороны и высоту известными числами .
12*4=18*ВР , 48=18*ВР , ВР=48:18=2 и 2/3 дм
2) Пусть задана высота ВР=4 дм .
Аналогично имеем АВ*СМ=АС*ВР , 12*СМ=18*4 , 12*СМ=72 ,
СМ=72:12=6 дм
sin=прот.ст./гипот
sinA=BC/AB=4/5=0,8
sinB=AC/AB=3/5=0,6
cos=прил.ст./гипот.
соsA=AC/AB=3/5=0,6
cosB=BC/AB=4/5=0,8
tg=прот.ст./прил.ст.
tgA=BC/AC=4/3=1 1/3
tgB=AC/BC=3/4=0,75
ctg=прил.ст./прот.ст.
ctgA=AC/BC=0,75
ctgB=1 1/3
Смотря как ты начертишь треугольник. Если ОМ будет лежать против угла в 30 градусов, то значит равна половине гипотенузы, 24/2=12
А если это другой из катетов, то находишь по теореме Пифагора
cos=прил.сторон./гипот.
sin=прот./гип.
один из катетов, который будет лежать против 30°, равен половине гипотенузы, 12/2=6, а другой по теореме Пифагора
а) 12²-6²=144-36=108
б) если треугольник прямоугольный и один из углов равен 45°, то значит он равнобедренный, 180°-(90°+45°)=45°