Основание пирамиды квадрат со стороной 16 метров , а две её боковые грани перпендикулярные к плоскости основания. найти площадь боковой поверхности пирамиды , если её высота 12 см
Основание данной пирамиды - квадрат. Все его стороны равны 16 см. Боковые грани ВМС и ДМС перпендикулярны основанию. Две другие - прямоугольные треугольники (по теореме о трех перпендикулярах: т.к. стороны основания (проекции наклонных) попарно перпендикулярны, перпендикулярны им и наклонные, т.е. МД⊥АД, и МВ⊥АВ). Площадь боковой поверхности = сумма площадей двух пар равных треугольников. S АВС=МС*ВС:2=12*16:2=96 см² S АВМ=ВМ*АВ ВМ=√(12²+16²)=20 см S АВМ= 20*16:2=160 см² S бок=2(96+160)=512см² ---------- [email protected]
Все его стороны равны 16 см.
Боковые грани ВМС и ДМС перпендикулярны основанию.
Две другие - прямоугольные треугольники (по теореме о трех перпендикулярах: т.к. стороны основания (проекции наклонных) попарно перпендикулярны, перпендикулярны им и наклонные, т.е. МД⊥АД, и МВ⊥АВ).
Площадь боковой поверхности = сумма площадей двух пар равных треугольников.
S АВС=МС*ВС:2=12*16:2=96 см²
S АВМ=ВМ*АВ
ВМ=√(12²+16²)=20 см
S АВМ= 20*16:2=160 см²
S бок=2(96+160)=512см²
----------
[email protected]