Основание пирамиды - параллелограмм. Две его соседние стороны перпендикулярны плоскости стопы, а меньшая сторона составляет 17 см. Найдите высоту пирамиды.
Возьми транспортир (полукруглая линейка такая с числами-градусами) Ищешь на транспортире отметку 110, помечаешь ее, проводишь от этой пометки наклонную линию, и потом еще одну, обычную горизонтальную линию, чтобы получился угол. А чтобы проверить, что угол равен именно 110 градусам, подставь транспортир к углу так, чтобы кончик угла оказался ровно на середине низа полукруга в транспортире, и смотришь, на какую цифру показывает верхняя "палка" угла, если на 110, значит, естественно, все правильно.
Возьми транспортир (полукруглая линейка такая с числами-градусами) Ищешь на транспортире отметку 110, помечаешь ее, проводишь от этой пометки наклонную линию, и потом еще одну, обычную горизонтальную линию, чтобы получился угол. А чтобы проверить, что угол равен именно 110 градусам, подставь транспортир к углу так, чтобы кончик угла оказался ровно на середине низа полукруга в транспортире, и смотришь, на какую цифру показывает верхняя "палка" угла, если на 110, значит, естественно, все правильно.
1) Найдем радиус окружности, впсинной в треуг. МКР
r=S/p, где S - площать треуг. МКР, а р - полупериметр этого треуг.
Площадь треугольника найдем по формуле Герона
S=корень из (р (р-МК) (р-МР) (р-КР) )
p=(4+5+7)/2=8 cm
S=корень из (8(8-4)(8-5)(8-7))=корень из (8*4*3*1)=4 корня из 6.
r=(4 корня из 6) / 8 = (корень из 6) / 2.
2) Найдем радиус сферы по теореме Пифагора
R=корень из (r^2+h^2), где h - расстояние от центра сферы до центра окружности, вписанной в треугольник.
R=корень из (3+5)=корень из 8.
3) Объем сферы V=(4/3)pi*R^3
V=(4/3)pi*8 корней из 8 = (32/3)pi* корней из 8