Основание пирамиды - поямоугольник ABCD, AB-18м, СD-18м, высота пирамиды проходит через точку пересечения диагоналей осования и равна 12м. Найдите площадь полной поверхности пирамиды
Отрезки пересечения этой проведенной плокости с боковыми гранями пирамиды - это средние линии треугольников, образующих боковые ребра пирамиды. Значит эти отрезки параллельны ребрам основания пирамиды. По теореме о том, что если две пересекающиеся прямые одной плоскости параллельны двум перескающимся прямым другой плоскости, то такие плосоксти параллельных, получаем требуемое утверждение. Полученный в сечении треугольник подобен треугольнику, лежащему в основании пирамиды с коэффициентом подобия 1/2. Т.е. его площадь в 4 раза меньше площади основания, т.е. равна 16.
делай по этому примеру) r(радиус описанной окр) =авс/4sтриугольника. то есть сначала найдем третью сторону триуг: по теор пифагора: 144+81=225. это корень из 15 следовательно третья сторона равна 15 см. ищем sтриугольника. s=0.5ab следовательно равно 0.5*12*9=54. теперь ищем радиус=9*12*15/4*54=7.5см. теперь найдем радиус вписанной окружности : r=sтр/p ытриугольника уже известна. найдем полупериметр: 12+15+9/2=18см. следовательно ищем радиус: 54/18=3 см. ответ : радиус описанной окр =7.5см, радиус вписанной окр = 3 см. ада была
делай по этому примеру) r(радиус описанной окр) =авс/4sтриугольника. то есть сначала найдем третью сторону триуг: по теор пифагора: 144+81=225. это корень из 15 следовательно третья сторона равна 15 см. ищем sтриугольника. s=0.5ab следовательно равно 0.5*12*9=54. теперь ищем радиус=9*12*15/4*54=7.5см. теперь найдем радиус вписанной окружности : r=sтр/p ытриугольника уже известна. найдем полупериметр: 12+15+9/2=18см. следовательно ищем радиус: 54/18=3 см. ответ : радиус описанной окр =7.5см, радиус вписанной окр = 3 см. ада была