Основание пирамиды - прямоугольный треугольник с острым углом 30. высота пирамиды равна 4 см и образует со всеми боковыми ребрами углы 45. найти площадь боковой поверхности пирамиды.,с рисунком
Решение : так как боковые рёбра образуют с высотой пирамиды равные углы, значит, они образуют равные углы с основанием пирамиды (острые углы прямоугольных треугольников, равных по общему катету и острому углу). ⇒ Высота опускается в центр окружности, описанной около основания пирамиды. Основание пирамиды - прямоугольный треугольник, центр описанной окружности лежит на середине гипотенузы. H ∈ AB, AH = BH.
SH⊥(ABC) ⇒ SH⊥AB ⇒ ∠SHA=90°
ΔSAH - прямоугольный равнобедренный, так как ∠SAH=∠ASH=45° ⇒ AH = SH = 4 см ⇒ AB = AH + BH = 8 см; SA = 4√2 см
SA = SB = SC = 4√2 см
ΔABC - прямоугольный. Катет, лежащий против угла 30°, равен половине гипотенузы. BC = AB/2 = 4 см
По теореме Пифагора
AC² = AB² - BC² = 8² - 4² = 48
AC = √48 = 4√3 см
см²
Площадь двух других граней можно найти по формуле Герона
Дано: пирамида SABC, SH⊥(ABC), SH = 4 см,
∠ASH=∠CSH=∠BSH=45°, ∠ACB=90°, ∠BAC=30°
Найти : Sбок
Решение : так как боковые рёбра образуют с высотой пирамиды равные углы, значит, они образуют равные углы с основанием пирамиды (острые углы прямоугольных треугольников, равных по общему катету и острому углу). ⇒ Высота опускается в центр окружности, описанной около основания пирамиды. Основание пирамиды - прямоугольный треугольник, центр описанной окружности лежит на середине гипотенузы. H ∈ AB, AH = BH.
SH⊥(ABC) ⇒ SH⊥AB ⇒ ∠SHA=90°
ΔSAH - прямоугольный равнобедренный, так как ∠SAH=∠ASH=45° ⇒ AH = SH = 4 см ⇒ AB = AH + BH = 8 см; SA = 4√2 см
SA = SB = SC = 4√2 см
ΔABC - прямоугольный. Катет, лежащий против угла 30°, равен половине гипотенузы. BC = AB/2 = 4 см
По теореме Пифагора
AC² = AB² - BC² = 8² - 4² = 48
AC = √48 = 4√3 см
см²
Площадь двух других граней можно найти по формуле Герона
ΔASC,
ΔBSC,
ответ: 4(4 + √15 + √7) см²