Основание пирамиды - равнобедренный треугольник с основанием, равным 12 см, и боковой стороной, равно 10 см. вычислить высоту пирамиды, если все ее боковые грани образуют с плоскостью основания двугранные углы, равные 30 градусов. с чертежом.
Чертеж в файле. Дальше не смотри Поскольку все боковые грани образуют с основанием равные углы,то вершина проектируется в центр окружности вписаной в основание пирамиды. S=pr. r=S/p p=(AB+BC+AC)/2=16 (cm) (S осн)²=p(p-AB)(p-BC)(p-AC)=16*6*6*4 Socн=48 см² OK=r r=48/16=3(cm) SO с треугольника SOK(O=90градусов) tg30=OK/H H=tg30/OK H= √3 (см) ответ: √3 см
Дано: SABC - пирамида, АВ=ВС=10см, АС=12см, боковые грани образуют с основанием углы 30 градусов. Найти: высоту SO. Построение. К основанию треугольника АВС проведем высоту ВН, которая будет являться и медианой и биссектрисой, так как треугольник равнобедренный. Отрезок SH также является высотой, так как треугольник ASC равнобедренный. Значит, угол SHB - заданный в условии двугранный угол. Высота пирамиды проецируется на основание в точку О, являющуюся центром вписанной в треугольник АВС окружности, так как все грани пирамиды наклонены к основанию под одинаковым углом. Решение: Рассмотрим прямоугольный треугольник OSH:
Неизвестным остается отрезок НО, являющийся радиусом ранее упомянутой окружности. Площадь треугольника равна половине произведения его основания на высоту, проведенную к основанию. С другой стороны площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. Приравнивая эти площади, получим:
BH найдем из треугольника АВН по теореме Пифагора, учитывая, что АН - половина АС.
Поскольку все боковые грани образуют с основанием равные углы,то вершина проектируется в центр окружности вписаной в основание пирамиды.
S=pr. r=S/p
p=(AB+BC+AC)/2=16 (cm)
(S осн)²=p(p-AB)(p-BC)(p-AC)=16*6*6*4
Socн=48 см²
OK=r r=48/16=3(cm)
SO с треугольника SOK(O=90градусов)
tg30=OK/H
H=tg30/OK H= √3 (см)
ответ: √3 см
Найти: высоту SO.
Построение. К основанию треугольника АВС проведем высоту ВН, которая будет являться и медианой и биссектрисой, так как треугольник равнобедренный. Отрезок SH также является высотой, так как треугольник ASC равнобедренный. Значит, угол SHB - заданный в условии двугранный угол. Высота пирамиды проецируется на основание в точку О, являющуюся центром вписанной в треугольник АВС окружности, так как все грани пирамиды наклонены к основанию под одинаковым углом.
Решение: Рассмотрим прямоугольный треугольник OSH:
Неизвестным остается отрезок НО, являющийся радиусом ранее упомянутой окружности.
Площадь треугольника равна половине произведения его основания на высоту, проведенную к основанию. С другой стороны площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. Приравнивая эти площади, получим:
BH найдем из треугольника АВН по теореме Пифагора, учитывая, что АН - половина АС.
ответ: см