Основание пирамиды - ромб с острым углом в 60 Высота пирамиды равна 3, а все двугранные углы при основании пирамиды 30 . Вычислите: а) высоту боковой грани пирамиды;
AC находится по теореме Пифагора и равна √136 1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B. Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм. По свойству диагоналей параллелограма AK²+BC² = 2*(AC²+AB²) AK²+(√136)²=2*((√136)²+20²) AK²=2*(136+400)-136 AK²=936 AK = 6√26 AA1 = AK/2 = (6√26)/2=3√26 AA1=BB1 = 3√26
Дан квадрат АВС1Д1. О1О2 - ось цилиндра. АВ⊥О1О2. Диагонали квадрата пересекаются наоси цилиндра в точке О. Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2. Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД. Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R. В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2). В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4. AM=a√2·sinα/2 ответ: радиус цилиндра
1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B.
Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм.
По свойству диагоналей параллелограма
AK²+BC² = 2*(AC²+AB²)
AK²+(√136)²=2*((√136)²+20²)
AK²=2*(136+400)-136
AK²=936
AK = 6√26
AA1 = AK/2 = (6√26)/2=3√26
AA1=BB1 = 3√26
Диагонали квадрата пересекаются наоси цилиндра в точке О.
Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2.
Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД.
Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R.
В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2).
В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4.
AM=a√2·sinα/2
ответ: радиус цилиндра