В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Основание пирамиды является ромб AВCD, с меньшей диагональю 10 см, и углом 60°. Меньшее боковое ребро равно 13 см. Найти площадь сечения, проходящего через большую диагональ ромба и высоту пирамиды.

Показать ответ
Ответ:
ZnayNeZnay
ZnayNeZnay
02.11.2022 19:48

Объяснение:

Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC

Объяснение: Автор задания не совсем удачно обозначил  центры вписанной и описанной окружностей. Обычно центр вписанной окружности  - это точка I, центр описанной - точка O.

С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан)  и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.

Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно  AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.

0,0(0 оценок)
Ответ:
lew8
lew8
02.10.2020 09:40
Центр вписанной окружности лежит на биссектрисе угла. Биссектриса - геом. место точек, равноудаленных от сторон угла. Если окружность касается сторон угла, ее центр удален от сторон угла на радиус, следовательно лежит на биссектрисе угла.

Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.

Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота