Сторона основания m, диагональ основания m√2 Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2. tg (α/2) = (m√2/2) / H а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2 б) Боковое ребро b = (m√2/2) / sin (α/2) в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2 L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2) Угол между боковой гранью и плоскостью основания sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α)) г) Двугранный угол при боковом ребре - это не знаю.
Решение: Так как призма правильная и четырёхугольная по условию, то фактически перед нами прямоугольный параллелепипед, а значит, его диагональ вычисляется с пространственной теоремы Пифагора, то есть B1D=sqrt(AB^2 + BC^2 + DD1^2).
Так как призма правильная, значит, в основании лежит правильный четырёхугольник или квадрат. А у квадрата все стороны равны, значит, можно упростить, B1D=sqrt(2 * AB^2 + DD1^2). Отсюда, DD1 = sqrt(B1D^2 - 2*AB^2)=sqrt(2.5^2 - 2*3)=sqrt(6.25-6)=sqrt(0.25)=0.5
Решение: Так как пирамида правильная, значит, её боковые грани - ранвые равнобедренные треугольники, а значит, DM - высота и биссектриса по свойству медианы равнобедренного треугольника. Следовательно, DМ - апофема. Зная апофему и площадь боковой поверхности, можем найти периметр треугольника АВС, лежащего в основании: Sбок=0,5 * Pосн * DM, значит, Pоснования = 36.
Так как пирамида правильная, значит, в основании лежит правильный треугольник, следовательно, АВ=ВС=АС=36:3=12
Вершина D проецируется в плоскость основания АВС. Обозначим проекцию точки через букву О. Расстояние от этой точки до стороны АВ равно ОМ. Отрезок ОМ совпадает с радиусом окружности, вписанной в правильный треугольник АВС, следовательно, ОМ = (sqrt(3)/6)*AB = (sqrt(3)/6)*12 = 2*sqrt(3)
В прямоугольном треугольнике DMO рассмотрим угол DMO. Его косинус равен отношению ОМ к DM, то есть cosDMO=OM/DM=(2*sqrt(3)) /4=(sqrt(3))/2, значит угол DMO = 30 градусов.
Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2.
tg (α/2) = (m√2/2) / H
а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2
б) Боковое ребро b = (m√2/2) / sin (α/2)
в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2
L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2)
Угол между боковой гранью и плоскостью основания
sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α))
г) Двугранный угол при боковом ребре - это не знаю.
1. Условие: ABCDA1B1C1D1 - правильная четырёхугольная призма
AB=корень из 3=sqrt(3)
B1D=2.5
DD1-?
Решение: Так как призма правильная и четырёхугольная по условию, то фактически перед нами прямоугольный параллелепипед, а значит, его диагональ вычисляется с пространственной теоремы Пифагора, то есть B1D=sqrt(AB^2 + BC^2 + DD1^2).
Так как призма правильная, значит, в основании лежит правильный четырёхугольник или квадрат. А у квадрата все стороны равны, значит, можно упростить, B1D=sqrt(2 * AB^2 + DD1^2). Отсюда, DD1 = sqrt(B1D^2 - 2*AB^2)=sqrt(2.5^2 - 2*3)=sqrt(6.25-6)=sqrt(0.25)=0.5
ответ: 0,5
2. Условие: DABC - правильная треугольная пирамида
AM=MB
DM=4
Sбок=72
угол DMO-?
Решение: Так как пирамида правильная, значит, её боковые грани - ранвые равнобедренные треугольники, а значит, DM - высота и биссектриса по свойству медианы равнобедренного треугольника. Следовательно, DМ - апофема. Зная апофему и площадь боковой поверхности, можем найти периметр треугольника АВС, лежащего в основании: Sбок=0,5 * Pосн * DM, значит, Pоснования = 36.
Так как пирамида правильная, значит, в основании лежит правильный треугольник, следовательно, АВ=ВС=АС=36:3=12
Вершина D проецируется в плоскость основания АВС. Обозначим проекцию точки через букву О. Расстояние от этой точки до стороны АВ равно ОМ. Отрезок ОМ совпадает с радиусом окружности, вписанной в правильный треугольник АВС, следовательно, ОМ = (sqrt(3)/6)*AB = (sqrt(3)/6)*12 = 2*sqrt(3)
В прямоугольном треугольнике DMO рассмотрим угол DMO. Его косинус равен отношению ОМ к DM, то есть cosDMO=OM/DM=(2*sqrt(3)) /4=(sqrt(3))/2, значит угол DMO = 30 градусов.
ответ: 30 градусов.