Сначала доказываем подобие треугольников ВСН и АСН (по двум углам). Это очевидно, поскольку угол АНС и угол ВНС будут прямыми, а угол АСН = углу НВС (из треугольника АВС угол НВС = 90 - угол САВ, из треугольника АСН следует, что угол АСН = 90 - угол САВ (он же угол САН)). Так как эти треугольники подобны, то подобны и их соответственные элементы (в нашем случае биссектрисы). Поэтому коэффициент подобия треугольников АСН и ВСН равен 1/3. Из подобия следует соотношение сторон этих треугольников: АН/СН = СН/ВН = АС/ВС = 1/3 Нас интересует последнее соотношение, дающее нам катеты исходного прямоугольного треугольника АВС. Пусть АС = х, то ВС = 3х, и по т. Пифагора имеем: х² + 9х² = (2√5)² 10х² = 20 х = √2 АС = √2, ВС = 3√2 Площадь треугольника АВС равна половине произведения катетов: 1/2×√2×3√2 = 3 ответ: 3
Радиус вписанной окружности ищется по формуле R = abc/4S, где a, b, c - стороны треугольника, S - площадь. S = ch/2; 4S=2ch Подставим это в нашу формулу: R=a^2*c/2ch - с сократятся R=a^2/2h 15=576/2h 30h=576 h=19.2 (см) - высота. Рассмотрим получившийся прямоугольный треугольник с гипотенузой 24 и катетом 19.2: x^2=24^2-19.2^2 X^2=576-368.64 x^2=207.36 x=14.4 (см) - половина основания. Значит, все основание = 14.4+14.4=28.8 (см). 2) Получившаяся внутри прямоугольника фигура - ромб (четырехугольник с равными сторонами). S ромба = полупроизвдению диагоналей, а диагонали = сторонам прямоугольника. Следовательно, площадь ромба = 1/2 площади прямоугольника. Площадь получившегося внутри ромба треугольника = сумме площадей двух других, т.к. основание MN = сумме оснований KP и PL, а высоты у этих треугольников равны. Значит, площадь треугольника MNP = 1/2 ромба KLMN. Площадь ромба = 1/2 площадь прямоугольника ABCD, а следовательно S треугольника MNP = 1/4 площади прямоугольника, что и требовалось доказать.
Так как эти треугольники подобны, то подобны и их соответственные элементы (в нашем случае биссектрисы). Поэтому коэффициент подобия треугольников АСН и ВСН равен 1/3.
Из подобия следует соотношение сторон этих треугольников: АН/СН = СН/ВН = АС/ВС = 1/3
Нас интересует последнее соотношение, дающее нам катеты исходного прямоугольного треугольника АВС.
Пусть АС = х, то ВС = 3х, и по т. Пифагора имеем:
х² + 9х² = (2√5)²
10х² = 20
х = √2
АС = √2, ВС = 3√2
Площадь треугольника АВС равна половине произведения катетов:
1/2×√2×3√2 = 3
ответ: 3
S = ch/2; 4S=2ch
Подставим это в нашу формулу:
R=a^2*c/2ch - с сократятся
R=a^2/2h
15=576/2h
30h=576
h=19.2 (см) - высота.
Рассмотрим получившийся прямоугольный треугольник с гипотенузой 24 и катетом 19.2:
x^2=24^2-19.2^2
X^2=576-368.64
x^2=207.36
x=14.4 (см) - половина основания.
Значит, все основание = 14.4+14.4=28.8 (см).
2) Получившаяся внутри прямоугольника фигура - ромб (четырехугольник с равными сторонами). S ромба = полупроизвдению диагоналей, а диагонали = сторонам прямоугольника. Следовательно, площадь ромба = 1/2 площади прямоугольника. Площадь получившегося внутри ромба треугольника = сумме площадей двух других, т.к. основание MN = сумме оснований KP и PL, а высоты у этих треугольников равны. Значит, площадь треугольника MNP = 1/2 ромба KLMN. Площадь ромба = 1/2 площадь прямоугольника ABCD, а следовательно S треугольника MNP = 1/4 площади прямоугольника, что и требовалось доказать.