Основание прямой призмы – прямоугольный треугольник с катетом 3 см и гипотенузой 13 см. Найдите полную поверхность призмы, если боковая грань, содержащая неизвестный катет основания, является квадратом.
1. Так как основание призмы прямоугольный треугольник, то используя теорему Пифагора найдем длину второго катета:
Х = √(132 – 122) = √(169 – 144) = √25 = 5 (см).
2. Для нахождения площади боковой поверхности прямой призмы используем формулу
S = P * h, где Р - это периметр основания, а h - высота призмы. По условию задачи наименьшая боковая грань призмы - это квадрат, следовательно высота призмы равна стороне этого квадрата, то есть h = 5 см. Найдем периметр основания:
ответ:150 cм2.
Объяснение:
1. Так как основание призмы прямоугольный треугольник, то используя теорему Пифагора найдем длину второго катета:
Х = √(132 – 122) = √(169 – 144) = √25 = 5 (см).
2. Для нахождения площади боковой поверхности прямой призмы используем формулу
S = P * h, где Р - это периметр основания, а h - высота призмы. По условию задачи наименьшая боковая грань призмы - это квадрат, следовательно высота призмы равна стороне этого квадрата, то есть h = 5 см. Найдем периметр основания:
Р = 5 + 12 + 13 = 30 (см).
3. Найдем площадь боковой поверхности:
S = 30 * 5 = 150 (cм2).