1 ) В основании пирамиды лежит квадрат. Одна из боковых граней пирамиды перпендикулярна её основанию, а две соседние с ней грани образуют с основанием двугранные углы по 30 градусов. Найдите площадь полной поверхности пирамиды, если её высота равна h.
1 ) В основании пирамиды лежит квадрат. Одна из боковых граней пирамиды перпендикулярна её основанию, а две соседние с ней грани образуют с основанием двугранные углы по 30 градусов. Найдите площадь полной поверхности пирамиды, если её высота равна h.
Дано: пирамида PABCD ; основание ABCD - квадрат
(APB) ⊥ (ABCD) ; (APD) ^(ABCD) = (BPC) ^(ABCD) =30°
PM ⊥(ABCD) ( M -основание иысоты)
PM = h
S пол - ?
Обозначаем AB = BC = CD =DA = a
AD ⊥ AM ⇒ AD ⊥AP (теореме 3-х перпендикуляров)
∠PAM =30° линейный угол двугранного угла PADC
анологично :
∠PBM =30° линейный угол двугранного угла PBCD
→ BC ⊥ BM ⇒ BC ⊥BP (теореме 3-х перпендикуляров)
ΔPAM = ΔPBM (общий катет PM и ∠PAM =∠PBM= 30° острый угол)
⇒PA =PB ; Прямоугольные Δ PAD = Δ PBC (по двум катетам)
из ΔAMP: PM = AP/2 (как катет леж. против угла 30°)
AP =2*PM =2h и AM =√3 h . a = AB =2*AM =2√3 h .
PD =√(AP² +AD²) =√( (2h)² + (2√3 h)² ) = √ (4h² + 12h²) =√16h² =4h
PN =√(PD² - DN²) =√(PD² - AM²) = √ (16h² - 3h²) =√13 h
S пол =Sосн + S бок = S(ABCD) + [S(APB) +S(APD)+ S(BPC) +S(DPC) ] =
= S(ABCD) +S(APB) +2S(APD)+ S(DPC) =
a² +(1/2)*AB*PM + 2S(APD) +(1/2)*DC*PN =
= a² +(1/2)*a*h + 2a*PA/2+(1/2)*a*PN = || a =2√3h , PA =2h , PN =√13 h || =
=(2√3 h)² +√3 h² +2√3 h*2h +√3*√13 h² =( 12 +5√3 +√39) h²
ответ: S пол = ( 12 +5√3 +√39) h² .
Дано:
AB ∩ CD
∠1 + ∠2 + ∠3 = 297˚.
Найти:
Все неразвёрнутые углы.
__________________________________
Мы знаем точно, что два угла из трёх - вертикальные, а значит между собой они равны.
Пусть x° равны ∠1 и ∠3, тогда ∠2 равен y°. Сумма смежных углов равна 180°, а сумма трёх данных углов - 297°.
Составляем систему уравнений:
Работа с системой уравнения:
__________________________________
x + (297 - 2x) = 180
x + 297 - 2x = 180
- x = - 117
x = 117
117˚ - ∠1.
НО: Так как прямые образуют вертикальные углы ⇒ ∠1 = ∠3, по свойству.
=> ∠3 = ∠4, тоже по свойству.
∠3 = 297 - (117 + 117) = 63° - ∠3 и ∠4.
Сумма всех 4 углов равна 360°.
ответ: 117˚; 117˚; 63˚; 63˚.