Основание прямой призмы-равнобедренный треугольник, в котором биссектриса угла при вершине равна 12см с катетами 6и 8 см. Диагональ боковой грани, содержащей основание треугольника, равна 10√2 см и образует с боковым ребром призмы угол 45. найти а)боковое ребро б) боковую поверхность призмы в) полную поверхность призмы
Координаты середины отрезков найдем по формуле
x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2.
Середина отрезка АВ(0;1;1)
Середина отрезка CD(-2;0;-1)
Координаты отрезка (вектора), соединяющего эти середины, равны разности соответствующих координат точек его конца и начала:
k=(-2;-1;-2)
Длина вектора, заданного координатами, равна корню квадратному из cуммы квадратов его координат:
|k|=√(4+1+4) = 3, это и есть искомое расстояние.
ответ: расстояние между серединами отрезков АВ и CD равно 3.
D = H = a/√2
В цилиндр вписывают правильную 6-угольную призму. Ее сторона основания
b = R = a/(2√2) = a√2/4
А высота равна H = a/√2
Основание - правильный 6-угольник - делим на 6 равн-них тр-ков со стороной b.
Площадь оснований призмы S(осн) = 6*b^2*√3/4 = 3/2*2a^2/16*√3 = a^2*3√3/16
Боковая поверхность состоит из 6 прям-ков с длиной b и высотой H
S(пр) = b*H = a√2/4*a/√2 = a^2/4
Полная площадь поверхности
S = 2S(осн) + 6S(пр) = a^2*3√3/8 + 6a^2/4 = 3a^2/8*(√3 + 4)