Рассмотрим треугольники ACF и BCF. 1) AC=BC (по условию (как боковые стороны равнобедренного треугольника)) 2) ∠ACF=∠BCF (так как CF — биссектриса по условию). 3) сторона CF — общая. Значит, ∆ ACF=∆ BCF (по двум сторонам и углу между ними). Из равенства треугольников следует равенство соответствующих сторон и углов. Таким образом, AF=BF, следовательно, CF — медиана. ∠AFC=∠BFC. А так как эти углы — смежные, значит, они прямые: ∠AFC=∠BFC=90º. Значит, CF — высота. Что и требовалось доказать.
Обозначим данный треугольник АВD.
Примем его боковые стороны равными а.
Проведем высоту ВН.
В равнобедренном треугольнике с углом при вершине 120° углы при основании равны 30°. ⇒
АН=DH=а•cos30°=a√3/2⇒ AD=a√3
Продлим медиану АМ на её длину до т.С.
АС=2 АМ=28.
Соединим В и D с т.С.
ВМ=DM по условию, АМ=МС по построению. Диагонали четырехугольника АВСD точкой пересечения делятся пополам. ⇒ АВСD – параллелограмм (по признаку).
По свойству параллелограмма сумма квадратов диагоналей равна сумме квадратов ВСЕХ его сторон.
Противоположные стороны параллелограмма равны.
АС²+BD²= 2 АВ²+2ВС²
28²+а²=2а²+6а²⇒
7а²=28•28
а²=4•4•7
а=4√7 см – длина боковых сторон треугольника.
∆ ABC,
AC=BC,
CF — биссектриса.
Доказать: CF — медиана и высота.
Доказательство:
Рассмотрим треугольники ACF и BCF.
1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))
2) ∠ACF=∠BCF (так как CF — биссектриса по условию).
3) сторона CF — общая.
Значит, ∆ ACF=∆ BCF (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон и углов.
Таким образом, AF=BF, следовательно, CF — медиана.
∠AFC=∠BFC. А так как эти углы — смежные, значит, они прямые: ∠AFC=∠BFC=90º.
Значит, CF — высота.
Что и требовалось доказать.