Основанием пирамиды РАВС является прямоугольный треугольник ABC, у которого пготенуза АС=20, катет AB=16. Боковое ребро PC Перпендикулярно плоскости основания и равно 5. Найдите ребро РВ.
Чертим пирамиду, диагонали основания (АС) и (ВD), высоту пирамиды SO. О - точка пересечения (АС) и (ВD) и центр квадрата АВСD. Треугольник АSC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), AO=OC=OS=sqrt(2)/2. Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высотам этих треугольников и равны sqrt(3)/2. Проведем сечение через вершину пирамиды S и середины ребер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью треугольника SAD равен углу между АВ и SM, значит равен углу между SM и NM или углу SMO. Из треугольника SOM получаем: cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)=sqrt(3)/3.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высотам этих треугольников и равны sqrt(3)/2. Проведем сечение через вершину пирамиды S и середины ребер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью треугольника SAD равен углу между АВ и SM, значит равен углу между SM и NM или углу SMO.
Из треугольника SOM получаем: cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)=sqrt(3)/3.