Основанием пирамиды является параллелограмм стороны которого равны 20 см и 36 см а площадь равна 360 кв.см. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. найдите площадь полной поверхности пирамиды?
1)Радиус шара, вписанного в куб, равен половине ребра куба Верно, шар касается параллельных плоскостей куба в точках, которые лежат на перпендикулярных прямых, т.е. эти две точки образуют диаметр. 2)Радиус окружности, вписанной в ромб, равен половине меньшей диагонали ромба Неверно, Радиус вписанной окружности ромба, равен высоте из центра окружности или корню из произведения сторон, на которые высота разбивает основание 3) Радиус шара, вписанного в конус, равен половине высоты конуса Неверно, радиус шара равен (AH-AG)/2 где AH - высота конуса, а AG - отрезок высоты с точкой G, лежащей на окружности шара Вокруг любой четырёхугольной пирамиды можно описать конус Верно, если все боковые ребра пирамиды равны,то вокруг пирамиды можно описать конус (Четырёхугольная пирамида имеет равные боковые ребра)
ответ: Проведём диагонали ромба (они являются бисектрисами углов ) ,так как нас дано 60 градусов ,то когда мы проведем диагонали у нас получится два угла по 30 градусов.Теперь периметр равен сумме все сторон и равняется 29.2 м , тогда сторона ромба равна 29.4/4 (м)
Так как если мы проведем диагонали у нас получится 4 прямоугольных треугольника.Нам дано 30 градусов и гипотенуза (что является стороной ромба) теперь за свойством катета напротив 30 градусов он равен половине гипотенузе и равен (7.3/2) Так как у ромба в точке пересечения диагоналей они делятся напополам то меньшая диагональ равна 7.3 м
Первое и четвёртое утверждение
Объяснение:
1)Радиус шара, вписанного в куб, равен половине ребра куба
Верно, шар касается параллельных плоскостей куба в точках, которые лежат на перпендикулярных прямых, т.е. эти две точки образуют диаметр.
2)Радиус окружности, вписанной в ромб, равен половине меньшей диагонали ромба
Неверно, Радиус вписанной окружности ромба, равен высоте из центра окружности или корню из произведения сторон, на которые высота разбивает основание
3) Радиус шара, вписанного в конус, равен половине высоты конуса
Неверно, радиус шара равен (AH-AG)/2 где AH - высота конуса, а AG - отрезок высоты с точкой G, лежащей на окружности шара
Вокруг любой четырёхугольной пирамиды можно описать конус
Верно, если все боковые ребра пирамиды равны,то вокруг пирамиды можно описать конус (Четырёхугольная пирамида имеет равные боковые ребра)
ответ: Проведём диагонали ромба (они являются бисектрисами углов ) ,так как нас дано 60 градусов ,то когда мы проведем диагонали у нас получится два угла по 30 градусов.Теперь периметр равен сумме все сторон и равняется 29.2 м , тогда сторона ромба равна 29.4/4 (м)
Так как если мы проведем диагонали у нас получится 4 прямоугольных треугольника.Нам дано 30 градусов и гипотенуза (что является стороной ромба) теперь за свойством катета напротив 30 градусов он равен половине гипотенузе и равен (7.3/2) Так как у ромба в точке пересечения диагоналей они делятся напополам то меньшая диагональ равна 7.3 м
Объяснение: