Основанием пирамиды является трапеция со сторонами a, a, a, 2a. две боковые грани перпендикулярны плоскости основания, а одна из двух других составляет с ней угол 45. найдите высоту пирамиды (рассмотрите все случаи).
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
Треугольники АВС и СЕD равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
АС=CD;BC=CE; по условию задачи
Углы АСВ и ЕСD равны между собой,как вертикальные
Равенство треугольников доказано,следовательно соответствующие углы и стороны треугольников тоже равны
Задание 2
Треугольники АВС и АСD равны между собой по первому принципу равенства треугольников
АВ=АD;Углы ВАС и САD равны между собой;
АС-общая сторона
Равенство треугольников доказано,и естественно,равны соответствующие стороны и углы
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
ответ:Задание 1
Треугольники АВС и СЕD равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
АС=CD;BC=CE; по условию задачи
Углы АСВ и ЕСD равны между собой,как вертикальные
Равенство треугольников доказано,следовательно соответствующие углы и стороны треугольников тоже равны
Задание 2
Треугольники АВС и АСD равны между собой по первому принципу равенства треугольников
АВ=АD;Углы ВАС и САD равны между собой;
АС-общая сторона
Равенство треугольников доказано,и естественно,равны соответствующие стороны и углы
Объяснение: