Основанием прямого параллелепипеда abcda1b1c1d1 является ромб abcd, сторона которого равна 4 и угол равен 60 градусов. плоскость ad1c1 составляет с плоскостью основания угол в 30 градусов. найдите: а) высоту ромба. б) высоту параллелепипеда в) площадь боковой поверхности параллелепипеда г) площадь поверхности паралелепипеда
1)Доказано
2)Доказано
Объяснение:
1) Рассмотрим треугольники RSO и POT. По условию
RO=OT, PO=OS. Угол ROS= углу
POT как вертикальные углы. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны. Значит, треугольник RSO= треугольнику POT по двум сторонам(RO=OT, PO=OS) и углам между ними(уголROS=углуPOT)
2) Рассмотрим треугольники QMK и FMP. По условию угол КQM=углу FPM, QM=MP. Угол
QMK=углу FMP как вертикальные углы. Если два угла и сторона между ними одного треугольника соответственно равны двум углам и стороне другого треугольника, то такие треугольники равны. Следовательно, треугольник QMK=треугольнику FMP по двум углам(угол КQM=углу FPM, угол QMK=углуFMP) и стороне между ними(QM=MP).
Из ΔАВС (∠А = 90°): ВС = √(АВ² + АС²) = √(9 + 4) = √13 см
Из ΔАDВ (∠А = 90°): ВD = √(АВ² + АD²) = √(1 + 4) = √5 см
Из ΔАDC (∠А = 90°): CD = √(АC² + АD²) = √(9 + 1) = √10 см
Площадь ΔDВС найдём по формуле Герона
S = √(p(p - DВ)(p - DС)(p - BC)), p = (DВ + DС + BC) : 2 = (√5 + √10 + √13) : 2 см
S = √((√5 + √10 + √13) : 2((√5 + √10 + √13) : 2 - √5)((√5 + √10 + √13) : 2 - √10)((√5 + √10 + √13) : 2 - √13)) = √((√5 + √10 + √13) : 2((√10 + √13 - √5) : 2)((√5 + √13 - √10 ) : 2)(( √5 + √10 - √13) : 2)) =0,25√((√5 + √10 + √13)(√10 + √13 - √5)(√5 + √13 - √10)( √5 + √10 - √13))=0,25√((√13 + √10)² - 5)(√5 + √13 - √10)( √5 - (√13 - √10))=0,25√((√13 + √10)² - 5)( 5 - (√13 - √10)²)=0,25√((13 + 10 + 2√130 - 5)( 5 - 13-10 + 2√130))=0,25√((18 + 2√130)(2√130-18))=0,25√(4·130 - 324)= 0,25√(520 - 324)= 0,25√196 = 0,25·14 = 3,5 см².
Можно ещё через высоты треугольников площадь вычислить, а также с использованием формулы площади ортогональной проекции. Я выбрал формулу Герона, чтобы показать как можно преобразовывать иррациональные выражения.