Основанием прямого параллелепипеда является ромб с диагоналями 25см и 35см. Диагональ боковой грани равна 70см. Найти полную поверхность параллелепипеда.
Сумма боковых сторон равнобедренного треугольника равна его периметру без основания:
16-6=10.
Каждая сторона - 10:2=5.
Опустив высоту из вершины на основание, получим два прямоугольных треугольника с катетами, равными половине основания и высоте, и гипотенузами - боковым сторонам треугольника.
Это - так называемые египетские треугольники.
В египетском треугольнике отношение катетов и гипотенузы
3:4:5
Один из катетов 3,
гипотенуза 5,
второй катет (здесь это высота)=4.
Площадь треугольника
4*6:2=12 см²
Примечание:
Существует множество отношений сторон (так называемые тройки Пифагора), сумма квадратов катетов которых дает квадрат целого числа. Например, 5:12:13
1) Пусть дан прямоугольный тр-к АСВ с прямым углом С, катетом АС=12 см и радиусом вписанной окр-ти r=5 см. 2) Пусть катет СВ=х см. По формуле r=(2S)/P, где r=5 - радиус вписанной окр-ти, S=0,5*AC*BC=0,5*12*x=6x, а Р=АС+ВС+АВ=12+х+sqrt(144+x^2). Получим уравнение: 5=[12x]/[12+x+sqrt(144+x^2)] => 12x=5(12+x+sqrt(144+x^2)) => 5*sqrt(144+x^2)=7x-60 => 25(144+x^2)=49*x^2-840x+3600 => 24*x^2-840*x=0 => => 2x(x-35)=0 => x=0 (не удовлетворяет условие задачи) или х=35 (см) 3) Итак, в тр-ке АВС: АС=12 см, СВ=35 см, АВ=sqrt(144+35^2)=37 см. Тогда Р=12+35+37=84 см.
Сумма боковых сторон равнобедренного треугольника равна его периметру без основания:
16-6=10.
Каждая сторона - 10:2=5.
Опустив высоту из вершины на основание, получим два прямоугольных треугольника с катетами, равными половине основания и высоте, и гипотенузами - боковым сторонам треугольника.
Это - так называемые египетские треугольники.
В египетском треугольнике отношение катетов и гипотенузы
3:4:5
Один из катетов 3,
гипотенуза 5,
второй катет (здесь это высота)=4.
Площадь треугольника
4*6:2=12 см²
Примечание:
Существует множество отношений сторон (так называемые тройки Пифагора), сумма квадратов катетов которых дает квадрат целого числа. Например, 5:12:13
1.
1) Пусть дан прямоугольный тр-к АСВ с прямым углом С, катетом АС=12 см и радиусом вписанной окр-ти r=5 см.
2) Пусть катет СВ=х см. По формуле r=(2S)/P, где r=5 - радиус вписанной окр-ти, S=0,5*AC*BC=0,5*12*x=6x, а Р=АС+ВС+АВ=12+х+sqrt(144+x^2).
Получим уравнение: 5=[12x]/[12+x+sqrt(144+x^2)] => 12x=5(12+x+sqrt(144+x^2))
=> 5*sqrt(144+x^2)=7x-60 => 25(144+x^2)=49*x^2-840x+3600 => 24*x^2-840*x=0 =>
=> 2x(x-35)=0 => x=0 (не удовлетворяет условие задачи) или х=35 (см)
3) Итак, в тр-ке АВС: АС=12 см, СВ=35 см, АВ=sqrt(144+35^2)=37 см. Тогда Р=12+35+37=84 см.