Гипотенуза г=ВС=8, один из углов 60, противолежащий ему катет равен a = АС = г*sin(60) = г*√3/2 второй катет, прилежащий к углу в 60° б = АВ = г*cos(60) = г*1/2 Площадь основания S = 1/2*а*б = 1/2*г*√3/2*г*1/2 = г²*√3/8 = 64*√3/8 = 8√3 Теперь найдём высоту призмы. Сторона АС прямоугольного треугольника АСС₁ АС = г*sin(60) = 8*√3/2 = 4√3 СС₁/АС = tg (30) h = СС₁ = tg (30)*AC = 1/√3*4√3 = 4 И финал - объём V = Sh = 8√3*4 = 32√3
a = АС = г*sin(60) = г*√3/2
второй катет, прилежащий к углу в 60°
б = АВ = г*cos(60) = г*1/2
Площадь основания
S = 1/2*а*б = 1/2*г*√3/2*г*1/2 = г²*√3/8 = 64*√3/8 = 8√3
Теперь найдём высоту призмы.
Сторона АС прямоугольного треугольника АСС₁
АС = г*sin(60) = 8*√3/2 = 4√3
СС₁/АС = tg (30)
h = СС₁ = tg (30)*AC = 1/√3*4√3 = 4
И финал - объём
V = Sh = 8√3*4 = 32√3